21,204 research outputs found

    On Hermitian separability of the next-to-leading order BFKL kernel for the adjoint representation of the gauge group in the planar N = 4 SYM

    Get PDF
    We analyze a modification of the BFKL kernel for the adjoint representation of the colour group in the maximally supersymmetric (N=4) Yang-Mills theory in the limit of a large number of colours, related to the modification of the eigenvalues of the kernel suggested by S. Bondarenko and A. Prygarin in order to reach the Hermitian separability of the eigenvalues. We restore the modified kernel in the momentum space. It turns out that the modification is related only to the real part of the kernel and that the correction to the kernel can not be presented by a single analytic function in the entire momentum region, which contradicts the known properties of the kernel

    Radiation damage effects on detectors and eletronic devices in harsh radiation environment

    Full text link
    Radiation damage effects represent one of the limits for technologies to be used in harsh radiation environments as space, radiotherapy treatment, high-energy phisics colliders. Different technologies have known tolerances to different radiation fields and should be taken into account to avoid unexpected failures which may lead to unrecoverable damages to scientific missions or patient health

    QFT with Twisted Poincar\'e Invariance and the Moyal Product

    Get PDF
    We study the consequences of twisting the Poincare invariance in a quantum field theory. First, we construct a Fock space compatible with the twisting and the corresponding creation and annihilation operators. Then, we show that a covariant field linear in creation and annihilation operators does not exist. Relaxing the linearity condition, a covariant field can be determined. We show that it is related to the untwisted field by a unitary transformation and the resulting n-point functions coincide with the untwisted ones. We also show that invariance under the twisted symmetry can be realized using the covariant field with the usual product or by a non-covariant field with a Moyal product. The resulting S-matrix elements are shown to coincide with the untwisted ones up to a momenta dependent phase.Comment: 11 pages, references adde

    One-loop Reggeon-Reggeon-gluon vertex at arbitrary space-time dimension

    Get PDF
    In order to check the compatibility of the gluon Reggeization in QCD with the ss-channel unitarity, the one-loop correction to the Reggeon-Reggeon-gluon vertex must be known at arbitrary space-time dimension DD. We obtain this correction from the gluon production amplitude in the multi-Regge kinematics and present an explicit expression for it in terms of a few integrals over the transverse momenta of virtual particles. The one-gluon contribution to the non-forward BFKL kernel at arbitrary DD is also obtained.Comment: 22 pages, LaTe

    On the Decoupling of the Homogeneous and Inhomogeneous Parts in Inhomogeneous Quantum Groups

    Full text link
    We show that, if there exists a realization of a Hopf algebra HH in a HH-module algebra AA, then one can split their cross-product into the tensor product algebra of AA itself with a subalgebra isomorphic to HH and commuting with AA. This result applies in particular to the algebra underlying inhomogeneous quantum groups like the Euclidean ones, which are obtained as cross-products of the quantum Euclidean spaces RqNR_q^N with the quantum groups of rotation Uqso(N)U_qso(N) of RqNR_q^N, for which it has no classical analog.Comment: Latex file, 27 pages. Final version to appear in J. Phys.

    Contraction analysis of switched Filippov systems via regularization

    Get PDF
    We study incremental stability and convergence of switched (bimodal) Filippov systems via contraction analysis. In particular, by using results on regularization of switched dynamical systems, we derive sufficient conditions for convergence of any two trajectories of the Filippov system between each other within some region of interest. We then apply these conditions to the study of different classes of Filippov systems including piecewise smooth (PWS) systems, piecewise affine (PWA) systems and relay feedback systems. We show that contrary to previous approaches, our conditions allow the system to be studied in metrics other than the Euclidean norm. The theoretical results are illustrated by numerical simulations on a set of representative examples that confirm their effectiveness and ease of application.Comment: Preprint submitted to Automatic

    Musical Actions of Dihedral Groups

    Get PDF
    The sequence of pitches which form a musical melody can be transposed or inverted. Since the 1970s, music theorists have modeled musical transposition and inversion in terms of an action of the dihedral group of order 24. More recently music theorists have found an intriguing second way that the dihedral group of order 24 acts on the set of major and minor chords. We illustrate both geometrically and algebraically how these two actions are {\it dual}. Both actions and their duality have been used to analyze works of music as diverse as Hindemith and the Beatles.Comment: 27 pages, 11 figures. To appear in the American Mathematical Monthly

    q-Deformed quaternions and su(2) instantons

    Full text link
    We have recently introduced the notion of a q-quaternion bialgebra and shown its strict link with the SO_q(4)-covariant quantum Euclidean space R_q^4. Adopting the available differential geometric tools on the latter and the quaternion language we have formulated and found solutions of the (anti)selfduality equation [instantons and multi-instantons] of a would-be deformed su(2) Yang-Mills theory on this quantum space. The solutions depend on some noncommuting parameters, indicating that the moduli space of a complete theory should be a noncommutative manifold. We summarize these results and add an explicit comparison between the two SO_q(4)-covariant differential calculi on R_q^4 and the two 4-dimensional bicovariant differential calculi on the bi- (resp. Hopf) algebras M_q(2),GL_q(2),SU_q(2), showing that they essentially coincide.Comment: Latex file, 18 page
    corecore