431 research outputs found
Violations of the Weak Energy Condition in Inflating Spacetimes
We argue that many future-eternal inflating spacetimes are likely to violate
the weak energy condition. It is possible that such spacetimes may not enforce
any of the known averaged conditions either. If this is indeed the case, it may
open the door to constructing non-singular, past-eternal inflating cosmologies.
Simple non-singular models are, however, unsatisfactory, and it is not clear if
satisfactory models can be built that solve the problem of the initial
singularity.Comment: 18 pages, 1 figure (which emerges automatically if you use dvips
Open and Closed Universes, Initial Singularities and Inflation
The existence of initial singularities in expanding universes is proved
without assuming the timelike convergence condition. The assumptions made in
the proof are ones likely to hold both in open universes and in many closed
ones. (It is further argued that at least some of the expanding closed
universes that do not obey a key assumption of the theorem will have initial
singularities on other grounds.) The result is significant for two reasons:
(a)~previous closed-universe singularity theorems have assumed the timelike
convergence condition, and (b)~the timelike convergence condition is known to
be violated in inflationary spacetimes. An immediate consequence of this
theorem is that a recent result on initial singularities in open,
future-eternal, inflating spacetimes may now be extended to include many closed
universes. Also, as a fringe benefit, the time-reverse of the theorem may be
applied to gravitational collapse.Comment: 27 pages, Plain TeX (figures are embedded in the file itself and they
will emerge if it is processed according to the instructions at the top of
the file
Eternal inflation and the initial singularity
It is shown that a physically reasonable spacetime that is eternally
inflating to the future must possess an initial singularity.Comment: 11 pages, Tufts University cosmology preprin
K-causality and degenerate spacetimes
The causal relation was introduced by Sorkin and Woolgar to extend the
standard causal analysis of spacetimes to those that are only . Most
of their results also hold true in the case of spacetimes with degeneracies. In
this paper we seek to examine explicitly in the case of Lorentzian
topology changing Morse spacetimes containing isolated degeneracies. We first
demonstrate some interesting features of this relation in globally Lorentzian
spacetimes. In particular, we show that is robust and that it coincides
with the Seifert relation when the spacetime is stably causal. Moreover, the
Hawking and Sachs characterisation of causal continuity translates into a
natural expression in terms of for general spacetimes. We then examine
in topology changing Morse spacetimes both with and without the
degeneracies and find further characterisations of causal continuity.Comment: Latex, 23 pages, 4 figure
Morse index and causal continuity. A criterion for topology change in quantum gravity
Studies in 1+1 dimensions suggest that causally discontinuous topology
changing spacetimes are suppressed in quantum gravity. Borde and Sorkin have
conjectured that causal discontinuities are associated precisely with index 1
or n-1 Morse points in topology changing spacetimes built from Morse functions.
We establish a weaker form of this conjecture. Namely, if a Morse function f on
a compact cobordism has critical points of index 1 or n-1, then all the Morse
geometries associated with f are causally discontinuous, while if f has no
critical points of index 1 or n-1, then there exist associated Morse geometries
which are causally continuous.Comment: Latex, 20 pages, 3 figure
Causal continuity in degenerate spacetimes
A change of spatial topology in a causal, compact spacetime cannot occur when
the metric is globally Lorentzian. One can however construct a causal metric
from a Riemannian metric and a Morse function on the background cobordism
manifold, which is Lorentzian almost everywhere except that it is degenerate at
each critical point of the function. We investigate causal structure in the
neighbourhood of such a degeneracy, when the auxiliary Riemannian metric is
taken to be Cartesian flat in appropriate coordinates. For these geometries, we
verify Borde and Sorkin's conjecture that causal discontinuity occurs if and
only if the Morse index is 1 or n-1.Comment: 34 pages, 11 figures, Latex2e, important references added,
introduction and discussions sections reworded slightl
Recycling universe
If the effective cosmological constant is non-zero, our observable universe
may enter a stage of exponential expansion. In such case, regions of it may
tunnel back to the false vacuum of an inflaton scalar field, and inflation with
a high expansion rate may resume in those regions. An ``ideal'' eternal
observer would then witness an infinite succession of cycles from false vacuum
to true, and back. Within each cycle, the entire history of a hot universe
would be replayed. If there were several minima of the inflaton potential, our
ideal observer would visit each one of these minima with a frequency which
depends on the shape of the potential. We generalize the formalism of
stochastic inflation to analyze the global structure of the universe when this
`recycling' process is taken into account.Comment: 43 pages, 10 figure
The Cosmic Censor Forbids Naked Topology
For any asymptotically flat spacetime with a suitable causal structure
obeying (a weak form of) Penrose's cosmic censorship conjecture and satisfying
conditions guaranteeing focusing of complete null geodesics, we prove that
active topological censorship holds. We do not assume global hyperbolicity, and
therefore make no use of Cauchy surfaces and their topology. Instead, we
replace this with two underlying assumptions concerning the causal structure:
that no compact set can signal to arbitrarily small neighbourhoods of spatial
infinity (``-avoidance''), and that no future incomplete null geodesic is
visible from future null infinity. We show that these and the focusing
condition together imply that the domain of outer communications is simply
connected. Furthermore, we prove lemmas which have as a consequence that if a
future incomplete null geodesic were visible from infinity, then given our
-avoidance assumption, it would also be visible from points of spacetime
that can communicate with infinity, and so would signify a true naked
singularity.Comment: To appear in CQG, this improved version contains minor revisions to
incorporate referee's suggestions. Two revised references. Plain TeX, 12
page
Atom interferometer as a selective sensor of rotation or gravity
In the presence of Earth gravity and gravity-gradient forces, centrifugal and
Coriolis forces caused by the Earth rotation, the phase of the time-domain atom
interferometers is calculated with accuracy up to the terms proportional to the
fourth degree of the time separation between pulses. We considered double-loop
atom interferometers and found appropriate condition to eliminate their
sensitivity to acceleration to get atomic gyroscope, or to eliminate the
sensitivity to rotation to increase accuracy of the atomic gravimeter.
Consequent use of these interferometers allows one to measure all components of
the acceleration and rotation frequency projection on the plane perpendicular
to gravity acceleration. Atom interference on the Raman transition driving by
noncounterpropagating optical fields is proposed to exclude stimulated echo
processes which can affect the accuracy of the atomic gyroscopes. Using
noncounterpropagating optical fields allows one to get a new type of the Ramsey
fringes arising in the unidirectional Raman pulses and therefore centered at
the two-quantum line center. Density matrix in the Wigner representation is
used to perform calculations. It is shown that in the time between pulses, in
the noninertial frame, for atoms with fully quantized spatial degrees of
freedom, this density matrix obeys classical Liouville equations.Comment: 21 pages, 4 figures, extended references, discussion, and motivatio
- …