119 research outputs found

    An effort to discover the preferred conformation of the potent AMG3 cannabinoid analog when reaching the active sites of the cannabinoid receptors

    Get PDF
    Most of current 3D-QSAR algorithms use alignments of compounds at the training set based on reference active ligands in the first step of the construction of the pharamacophore modeling. This first step mostly defines the success of constructed pharmacophore models. In this step, it is essential to find the bioactive conformation for solid and reliable 3D-QSAR models. Therefore, we have proceeded through different approaches for revealing the preferred conformations of Δ(8)-THC derivative AMG-3 at CB1 and CB2 receptors. In the first approach, we have applied conformational search methods in gas and in solvent phases for the ligand. The derived low energy conformers using these methodologies have been modeled through 3D-QSAR studies (first generation model). In the second approach, the low energy conformers derived from molecular docking studies have been used as input for 3D-QSAR studies (second generation model). In the current study, a new approach using MD calculations in a simulated biological environment, thus the CB receptors surrounded by a lipid bilayer environment has been used (third generation). The obtained results for different environments were compared and the approach deriving the highest statistic results was used for the generation of the novel AMG3 analogs for optimal and selective binding affinities at CB1 and CB2 receptors by the de novo drug design modeling

    Gi/o-protein coupled receptors in the aging brain

    Get PDF
    Cells translate extracellular signals to regulate processes such as differentiation, metabolism and proliferation, via transmembranar receptors. G protein-coupled receptors (GPCRs) belong to the largest family of transmembrane receptors, with over 800 members in the human species. Given the variety of key physiological functions regulated by GPCRs, these are main targets of existing drugs. During normal aging, alterations in the expression and activity of GPCRs have been observed. The central nervous system (CNS) is particularly affected by these alterations, which results in decreased brain functions, impaired neuroregeneration, and increased vulnerability to neuropathologies, such as Alzheimer's and Parkinson diseases. GPCRs signal via heterotrimeric G proteins, such as Go, the most abundant heterotrimeric G protein in CNS. We here review age-induced effects of GPCR signaling via the Gi/o subfamily at the CNS. During the aging process, a reduction in protein density is observed for almost half of the Gi/o-coupled GPCRs, particularly in age-vulnerable regions such as the frontal cortex, hippocampus, substantia nigra and striatum. Gi/o levels also tend to decrease with aging, particularly in regions such as the frontal cortex. Alterations in the expression and activity of GPCRs and coupled G proteins result from altered proteostasis, peroxidation of membranar lipids and age-associated neuronal degeneration and death, and have impact on aging hallmarks and age-related neuropathologies. Further, due to oligomerization of GPCRs at the membrane and their cooperative signaling, down-regulation of a specific Gi/o-coupled GPCR may affect signaling and drug targeting of other types/subtypes of GPCRs with which it dimerizes. Gi/o-coupled GPCRs receptorsomes are thus the focus of more effective therapeutic drugs aiming to prevent or revert the decline in brain functions and increased risk of neuropathologies at advanced ages.This work was supported by Fundação para a Ciência e Tecnologia, Centro 2020 and Portugal 2020, the COMPETE program, QREN, and the European Union (FEDER program) via the GoBack project (PTDC/CVT-CVT/32261/2017), the pAGE program (Centro-01-0145-FEDER-000003), and Institute for Biomedicine iBiMED (UID/BIM/04501/2013; UID/BIM/04501/2019).publishe

    3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullarene-based HIV-1 PR inhibitors

    No full text
    r the first time, a set of experimentally reported [60] fullerene derivatives were subjected to the 3DQSAR/CoMFA and CoMSIA studies. The aim of this study is to propose a series of novel [60] fullerenebased inhibitors with optimal binding affinity for the HIV-1 PR enzyme. The position of the template molecule at the cavity of HIV-1 PR was optimized and 3D QSAR models were developed. Relative contributions of steric/electrostatic fields of the 3D-QSAR/CoMFA and CoMSIA models have shown that steric effects govern the bioactivity of the compounds, but electrostatic interactions play also an important role.The de novo drug design Leapfrog simulations provided a series of novel compounds with predicted improved inhibition effect
    corecore