197 research outputs found
Reframing Sepsis Immunobiology for Translation
Sepsis is a common and deadly condition. The current framing of dysregulated host immune responses within the sepsis immunobiology model into pro-inflammatory and immunosuppressive responses for testing novel treatments, have not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalized immunomodulation. In this perspective we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should broaden beyond subtyping, onto identifying deterministic molecularnetworks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as pathologic disruption and/or alteration in homeostasis of the immune-driven resistance, tolerance and resolution mechanisms occurring concurrently. Our reframing highlights novel treatment opportunities and could enable successful immunomodulation in the future.Keywords: Sepsis, immunobiology, precision medicine, molecular mechanisms, subtyping, immunomodulation<br/
Acute quadriplegia caused by necrotizing myopathy in a renal transplant recipient with severe pneumonia: acute onset and complete recovery
Critical illness polyneuropathy and myopathy are multifaceted complications that follow severe illnesses involving the sensorimotor axons and proximal skeletal muscles. These syndromes have rarely been reported among renal transplant recipients. In this paper, we report a case of acute quadriplegia caused by necrotizing myopathy in a renal transplant recipient with severe pneumonia. The muscle strength in the patient’s extremities improved gradually after four weeks of comprehensive treatment, and his daily life activities were normal a year after being discharged
Heparin Dose Intensity and Organ Support-Free Days in Patients Hospitalized for COVID-19.
BACKGROUND
Clinical trials suggest that therapeutic-dose heparin may prevent critical illness and vascular complications due to COVID-19, but knowledge gaps exist regarding the efficacy of therapeutic heparin including its comparative effect relative to intermediate-dose anticoagulation.
OBJECTIVES
The authors performed 2 complementary secondary analyses of a completed randomized clinical trial: 1) a prespecified per-protocol analysis; and 2) an exploratory dose-based analysis to compare the effect of therapeutic-dose heparin with low- and intermediate-dose heparin.
METHODS
Patients who received initial anticoagulation dosed consistently with randomization were included. The primary outcome was organ support-free days (OSFDs), a combination of in-hospital death and days free of organ support through day 21.
RESULTS
Among 2,860 participants, 1,761 (92.8%) noncritically ill and 857 (89.1%) critically ill patients were treated per-protocol. Among noncritically ill per-protocol patients, the posterior probability that therapeutic-dose heparin improved OSFDs as compared with usual care was 99.3% (median adjusted OR: 1.36; 95% credible interval [CrI]: 1.07-1.74). Therapeutic heparin had a high posterior probability of efficacy relative to both low- (94.6%; adjusted OR: 1.26; 95% CrI: 0.95-1.64) and intermediate- (99.8%; adjusted OR: 1.80; 95% CrI: 1.22-2.62) dose thromboprophylaxis. Among critically ill per-protocol patients, the posterior probability that therapeutic heparin improved outcomes was low.
CONCLUSIONS
Among noncritically ill patients hospitalized for COVID-19 who were randomized to and initially received therapeutic-dose anticoagulation, heparin, compared with usual care, was associated with improved OSFDs, a combination of in-hospital death and days free of organ support. Therapeutic heparin appeared superior to both low- and intermediate-dose thromboprophylaxis
Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19.
BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.)
Dysregulated innate and adaptive immune responses discriminate disease severity in COVID-19
The clinical spectrum of COVID-19 varies and the differences in host response characterizing this variation have not been fully elucidated. COVID-19 disease severity correlates with an excessive pro-inflammatory immune response and profound lymphopenia. Inflammatory responses according to disease severity were explored by plasma cytokine measurements and proteomics analysis in 147 COVID-19 patients. Furthermore, peripheral blood mononuclear cell cytokine production assays and whole blood flow cytometry were performed. Results confirm a hyperinflammatory innate immune state, while highlighting hepatocyte growth factor and stem cell factor as potential biomarkers for disease severity. Clustering analysis reveals no specific inflammatory endotypes in COVID-19 patients. Functional assays reveal abrogated adaptive cytokine production (interferon-gamma, interleukin-17 and interleukin-22) and prominent T cell exhaustion in critically ill patients, whereas innate immune responses were intact or hyperresponsive. Collectively, this extensive analysis provides a comprehensive insight into the pathobiology of severe to critical COVID-19 and highlight potential biomarkers of disease severity
- …