763 research outputs found
Negative capacitance in organic semiconductor devices: bipolar injection and charge recombination mechanism
We report negative capacitance at low frequencies in organic semiconductor
based diodes and show that it appears only under bipolar injection conditions.
We account quantitatively for this phenomenon by the recombination current due
to electron-hole annihilation. Simple addition of the recombination current to
the well established model of space charge limited current in the presence of
traps, yields excellent fits to the experimentally measured admittance data.
The dependence of the extracted characteristic recombination time on the bias
voltage is indicative of a recombination process which is mediated by localized
traps.Comment: 3 pages, 3 figures, accepted for publication in Applied Physics
Letter
Designing Robot Identity: The Role of Voice, Clothing, and Task on Robot Gender Perception
Perceptions of gender are a significant aspect of human-human interaction,
and gender has wide-reaching social implications for robots deployed in
contexts where they are expected to interact with humans. This work explored
two flexible modalities for communicating gender in robots--voice and
appearance--and we studied their individual and combined influences on a
robot's perceived gender. We evaluated the perception of a robot's gender
through three video-based studies. First, we conducted a study (n=65) on the
gender perception of robot voices by varying speaker identity and pitch.
Second, we conducted a study (n=93) on the gender perception of robot clothing
designed for two different tasks. Finally, building on the results of the first
two studies, we completed a large integrative video-based study (n=273)
involving two human-robot interaction tasks. We found that voice and clothing
can be used to reliably establish a robot's perceived gender, and that
combining these two modalities can have different effects on the robot's
perceived gender. Taken together, these results inform the design of robot
voices and clothing as individual and interacting components in the perceptions
of robot gender
Pressure-Induced Rotational Symmetry Breaking in URuSi
Phase transitions and symmetry are intimately linked. Melting of ice, for
example, restores translation invariance. The mysterious hidden order (HO)
phase of URuSi has, despite relentless research efforts, kept its
symmetry breaking element intangible. Here we present a high-resolution x-ray
diffraction study of the URuSi crystal structure as a function of
hydrostatic pressure. Below a critical pressure threshold kbar,
no tetragonal lattice symmetry breaking is observed even below the HO
transition K. For , however, a pressure-induced rotational
symmetry breaking is identified with an onset temperatures K.
The emergence of an orthorhombic phase is found and discussed in terms of an
electronic nematic order that appears unrelated to the HO, but with possible
relevance for the pressure-induced antiferromagnetic (AF) phase. Existing
theories describe the HO and AF phases through an adiabatic continuity of a
complex order parameter. Since none of these theories predicts a
pressure-induced nematic order, our finding adds an additional symmetry
breaking element to this long-standing problem.Comment: 6 pages, 4 figures and supplemental material
Synthesis, radiolabelling and in vitro and in vivo evaluation of a novel fluorinated ABP688 derivative for the PET imaging of metabotropic glutamate receptor subtype 5
(E)-3-(Pyridin-2-ylethynyl)cyclohex-2-enone O-(2-(3-18F-fluoropropoxy)ethyl) oxime ([18F]-PSS223) was evaluated
in vitro and in vivo to establish its potential as a PET tracer for imaging metabotropic glutamate receptor subtype
5 (mGluR5). [18F]-PSS223 was obtained in 20% decay corrected radiochemical yield whereas the non-radioactive
PSS223 was accomplished in 70% chemical yield in a SN2 reaction of common intermediate mesylate 8 with potassium
fluoride. The in vitro binding affinity of [18F]-PSS223 was measured directly in a Scatchard assay to give Kd =
3.34 ± 2.05 nM. [18F]-PSS223 was stable in PBS and rat plasma but was significantly metabolized by rat liver microsomal
enzymes, but to a lesser extent by human liver microsomes. Within 60 min, 90% and 20% of [18F]-PSS223 was
metabolized by rat and human microsome enzymes, respectively. In vitro autoradiography on horizontal rat brain
slices showed heterogeneous distribution of [18F]-PSS223 with the highest accumulation in brain regions where
mGluR5 is highly expressed (hippocampus, striatum and cortex). Autoradiography in vitro under blockade conditions
with ABP688 confirmed the high specificity of [18F]-PSS223 for mGluR5. Under the same blocking conditions but using
the mGluR1 antagonist, JNJ16259685, no blockade was observed demonstrating the selectivity of [18F]-PSS223
for mGluR5 over mGluR1. Despite favourable in vitro properties of [18F]-PSS223, a clear-cut visualization of mGluR5-
rich brain regions in vivo in rats was not possible mainly due to a fast clearance from the brain and low metabolic
stability of [18F]-PSS223
Transforming growth factor-β1 impairs neuropathic pain through pleiotropic effects
<p>Abstract</p> <p>Background</p> <p>Understanding the underlying mechanisms of neuropathic pain caused by damage to the peripheral nervous system remains challenging and could lead to significantly improved therapies. Disturbance of homeostasis not only occurs at the site of injury but also extends to the spinal cord and brain involving various types of cells. Emerging data implicate neuroimmune interaction in the initiation and maintenance of chronic pain hypersensitivity.</p> <p>Results</p> <p>In this study, we sought to investigate the effects of TGF-β1, a potent anti-inflammatory cytokine, in alleviating nerve injury-induced neuropathic pain in rats. By using a well established neuropathic pain animal model (partial ligation of the sciatic nerve), we demonstrated that intrathecal infusion of recombinant TGF-β1 significantly attenuated nerve injury-induced neuropathic pain. TGF-β1 treatment not only prevents development of neuropathic pain following nerve injury, but also reverses previously established neuropathic pain conditions. The biological outcomes of TGF-β1 in this context are attributed to its pleiotropic effects. It inhibits peripheral nerve injury-induced spinal microgliosis, spinal microglial and astrocytic activation, and exhibits a powerful neuroprotective effect by preventing the induction of ATF3<sup>+ </sup>neurons following nerve ligation, consequently reducing the expression of chemokine MCP-1 in damaged neurons. TGF-β1 treatment also suppresses nerve injury-induced inflammatory response in the spinal cord, as revealed by a reduction in cytokine expression.</p> <p>Conclusion</p> <p>Our findings revealed that TGF-β1 is effective in the treatment of neuropathic by targeting both neurons and glial cells. We suggest that therapeutic agents such as TGF-β1 having multipotent effects on different types of cells could work in synergy to regain homeostasis in local spinal cord microenvironments, therefore contributing to attenuate neuropathic pain.</p
Triplet Exciton Generation in Bulk-Heterojunction Solar Cells based on Endohedral Fullerenes
Organic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic
nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy
carbonyl]propyl-1-phenyl-Lu3N@C80 (Lu3N@C80-PCBEH) show an open circuit voltage
(VOC) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid
methyl ester (PC61BM). To fully exploit the potential of this acceptor molecule
with respect to the power conversion efficiency (PCE) of solar cells, the short
circuit current (JSC) should be improved to become competitive with the state
of the art solar cells. Here, we address factors influencing the JSC in blends
containing the high voltage absorber Lu3N@C80-PCBEH in view of both
photogeneration but also transport and extraction of charge carriers. We apply
optical, charge carrier extraction, morphology, and spin-sensitive techniques.
In blends containing Lu3N@C80-PCBEH, we found 2 times weaker photoluminescence
quenching, remainders of interchain excitons, and, most remarkably, triplet
excitons formed on the polymer chain, which were absent in the reference
P3HT:PC61BM blends. We show that electron back transfer to the triplet state
along with the lower exciton dissociation yield due to intramolecular charge
transfer in Lu3N@C80-PCBEH are responsible for the reduced photocurrent
CD69 is a TGF-β/1α,25-dihydroxyvitamin D3 target gene in monocytes
CD69 is a transmembrane lectin that can be expressed on most hematopoietic cells. In monocytes, it has been functionally linked to the 5-lipoxygenase pathway in which the leukotrienes, a class of highly potent inflammatory mediators, are produced. However, regarding CD69 gene expression and its regulatory mechanisms in monocytes, only scarce data are available. Here, we report that CD69 mRNA expression, analogous to that of 5-lipoxygenase, is induced by the physiologic stimuli transforming growth factor-β (TGF-β) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in monocytic cells. Comparison with T- and B-cell lines showed that the effect was specific for monocytes. CD69 expression levels were increased in a concentration-dependent manner, and kinetic analysis revealed a rapid onset of mRNA expression, indicating that CD69 is a primary TGF-β/1α,25(OH)2D3 target gene. PCR analysis of different regions of the CD69 mRNA revealed that de novo transcription was initiated and proximal and distal parts were induced concomitantly. In common with 5-lipoxygenase, no activation of 0.7 kb or ~2.3 kb promoter fragments by TGF-β and 1α,25(OH)2D3 could be observed in transient reporter assays for CD69. Analysis of mRNA stability using a transcription inhibitor and a 3′UTR reporter construct showed that TGF-β and 1α,25(OH)2D3 do not influence CD69 mRNA stability. Functional knockdown of Smad3 clearly demonstrated that upregulation of CD69 mRNA, in contrast to 5-LO, depends on Smad3. Comparative studies with different inhibitors for mitogen activated protein kinases (MAPKs) revealed that MAPK signalling is involved in CD69 gene regulation, whereas 5-lipoxygenase gene expression was only partly affected. Mechanistically, we found evidence that CD69 gene upregulation depends on TAK1-mediated p38 activation. In summary, our data indicate that CD69 gene expression, conforming with 5-lipoxygenase, is regulated monocyte-specifically by the physiologic stimuli TGF-β and 1α,25(OH)2D3 on mRNA level, although different mechanisms account for the upregulation of each gene
GLI2-Mediated Melanoma Invasion and Metastasis
Background The transforming growth factor-β (TGF-β) pathway, which has both tumor suppressor and pro-oncogenic activities, is often constitutively active in melanoma and is a marker of poor prognosis. Recently, we identified GLI2, a mediator of the hedgehog pathway, as a transcriptional target of TGF-β signaling. Methods We used real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting to determine GLI2 expression in human melanoma cell lines and subsequently classified them as GLI2high or as GLI2low according to their relative GLI2 mRNA and protein expression levels. GLI2 expression was reduced in a GLI2high cell line with lentiviral expression of short hairpin RNA targeting GLI2. We assessed the role of GLI2 in melanoma cell invasiveness in Matrigel assays. We measured secretion of matrix metalloproteinase (MMP)-2 and MMP-9 by gelatin zymography and expression of E-cadherin by western blotting and RT-PCR. The role of GLI2 in development of bone metastases was determined following intracardiac injection of melanoma cells in immunocompromised mice (n = 5-13). Human melanoma samples (n = 79) at various stages of disease progression were analyzed for GLI2 and E-cadherin expression by immunohistochemistry, in situ hybridization, or RT-PCR. All statistical tests were two-sided. Results Among melanoma cell lines, increased GLI2 expression was associated with loss of E-cadherin expression and with increased capacity to invade Matrigel and to form bone metastases in mice (mean osteolytic tumor area: GLI2high vs GLI2low, 2.81 vs 0.93 mm2, difference = 1.88 mm2, 95% confidence interval [CI] = 1.16 to 2.60, P < .001). Reduction of GLI2 expression in melanoma cells that had expressed high levels of GLI2 substantially inhibited both basal and TGF-β-induced cell migration, invasion (mean number of Matrigel invading cells: shGLI2 vs shCtrl (control), 52.6 vs 100, difference = 47.4, 95% CI = 37.0 to 57.8, P = .024; for shGLI2 + TGF-β vs shCtrl + TGF-β, 31.0 vs 161.9, difference = −130.9, 95% CI = −96.2 to −165.5, P = .002), and MMP secretion in vitro and the development of experimental bone metastases in mice. Within human melanoma lesions, GLI2 expression was heterogeneous, associated with tumor regions in which E-cadherin was lost and increased in the most aggressive tumors. Conclusion GLI2 was directly involved in driving melanoma invasion and metastasis in this preclinical stud
- …