632 research outputs found
Flux cancellation and the evolution of the eruptive filament of 2011 June 7
We investigate whether flux cancellation is responsible for the formation of
a very massive filament resulting in the spectacular 2011 June 7 eruption. We
analyse and quantify the amount of flux cancellation that occurs in NOAA AR
11226 and its two neighbouring ARs (11227 & 11233) using line-of-sight
magnetograms from the Heliospheric Magnetic Imager. During a 3.6-day period
building up to the filament eruption, 1.7 x 10^21 Mx, 21% of AR 11226's maximum
magnetic flux, was cancelled along the polarity inversion line (PIL) where the
filament formed. If the flux cancellation continued at the same rate up until
the eruption then up to 2.8 x 10^21 Mx (34% of the AR flux) may have been built
into the magnetic configuration that contains the filament plasma. The large
flux cancellation rate is due to an unusual motion of the positive polarity
sunspot, which splits, with the largest section moving rapidly towards the PIL.
This motion compresses the negative polarity and leads to the formation of an
orphan penumbra where one end of the filament is rooted. Dense plasma threads
above the orphan penumbra build into the filament, extending its length, and
presumably injecting material into it. We conclude that the exceptionally
strong flux cancellation in AR 11226 played a significant role in the formation
of its unusually massive filament. In addition, the presence and coherent
evolution of bald patches in the vector magnetic field along the PIL suggests
that the magnetic field configuration supporting the filament material is that
of a flux rope.Comment: 18 pages, 7 figures. Submitted to ApJ in December 2015, accepted in
June 201
The rise and emergence of untwisted toroidal flux ropes on the sun
Magnetic flux ropes (MFRs) rising buoyantly through the Sun's convection zone are thought to be subject to viscous forces preventing them from rising coherently. Numerous studies have suggested that MFRs require a minimum twist in order to remain coherent during their rise. Furthermore, even MFRs that get to the photosphere may be unable to successfully emerge into the corona unless they are at least moderately twisted, since the magnetic pressure gradient needs to overcome the weight of the photospheric plasma. To date, however, no lower limit has been placed on the critical minimum twist required for an MFR to rise coherently through the convection zone or emerge through the photosphere. In this paper, we simulate an untwisted toroidal MFR that is able to rise from the convection zone and emerge through the photosphere as an active region that resembles those observed on the Sun. We show that untwisted MFRs can remain coherent during their rise and then pile up near the photosphere, triggering undular instability, allowing the MFR to emerge through the photosphere. We propose that the toroidal geometry of our MFR is critical for its coherent rise. Upon emergence, a pair of lobes rises into the corona. The two lobes then interact and reconnect, resulting in a localized high speed jet. The resulting photospheric magnetogram displays the characteristic salt-and-pepper structure often seen in observations. Our major result is that MFRs need not be twisted to rise coherently through the convection zone and emerge through the photosphere. © 2021. The American Astronomical Society. All rights reserved
Temperature-dependence of the clear-sky feedback in radiative-convective equilibrium
Abstract We quantify the temperature-dependence of the clear-sky climate sensitivity in a one-dimensional radiative-convective equilibrium model. The atmosphere is adjusted to fixed surface temperatures between 280 and 330 K while preserving other boundary conditions in particular the relative humidity and the CO2 concentration. We show that an out-of-bounds usage of the radiation scheme rapid radiative transfer model for GCMs (RRTMG) can lead to an erroneous decrease of the feedback parameter and an associated ?bump? in climate sensitivity as found in other modeling studies. Using a line-by-line radiative transfer model, we find no evidence for a strengthening of the longwave radiative feedback for surface temperatures between 305 and 320 K. However, the line-by-line simulations also show a slight decrease in climate sensitivity when surface temperatures exceed 310 K. This decrease is caused by water-vapor masking the radiative forcing at the flanks of the CO2 absorption band, which reduces the total radiative forcing by about 18%
Observations and Modelling of the Pre-flare Period of the 29 March 2014 X1 Flare
On 29 March 2014, NOAA Active Region (AR) 12017 produced an X1 flare that was simultaneously observed by an unprecedented number of observatories. We have investigated the pre-flare period of this flare from 14:00 UT until 19:00 UT using joint observations made by the Interface Region Imaging Spectrometer (IRIS) and the Hinode Extreme Ultraviolet Imaging Spectrometer (EIS). Spectral lines providing coverage of the solar atmosphere from the chromosphere to the corona were analysed to investigate pre-flare activity within the AR. The results of the investigation have revealed evidence of strongly blue-shifted plasma flows, with velocities up to 200kms−1, being observed 40 minutes prior to flaring. These flows are located along the filament present in the active region and are both spatially discrete and transient. In order to constrain the possible explanations for this activity, we undertake non-potential magnetic field modelling of the active region. This modelling indicates the existence of a weakly twisted flux rope along the polarity inversion line in the region where a filament and the strong pre-flare flows are observed. We then discuss how these observations relate to the current models of flare triggering. We conclude that the most likely drivers of the observed activity are internal reconnection in the flux rope, early onset of the flare reconnection, or tether-cutting reconnection along the filament
Primary chronic cold agglutinin disease: An update on pathogenesis, clinical features and therapy
Chronic cold agglutinin disease (CAD) is a subgroup of autoimmune hemolytic anemia. Primary CAD has traditionally been defined by the absence of any underlying or associated disease. The results of therapy with corticosteroids, alkylating agents and interferon-a have been poor. Cold reactive immunoglobulins against erythrocyte surface antigens are essential to pathogenesis of CAD. These cold agglutinins are monoclonal, usually IgMκ auto antibodies with heavy chain variable regions encoded by the VH4-34 gene segment. By flowcytometric and immunohistochemical assessments, a monoclonal CD20+κ+B-lymphocyte population has been demonstrated in the bone marrow of 90% of the patients, and lymphoplasmacytic lymphoma is a frequent finding. Novel attempts at treatment for primary CAD have mostly been directed against the clonal B-lymphocytes. Phase 2 studies have shown that therapy with the chimeric anti-CD20 antibody rituximab produced partial response rates of more than 50% and occasional complete responses. Median response duration, however, was only 11 months. In this review, we discuss the clinical and pathogenetic features of primary CAD, emphasizing the more recent data on its close association with clonal lymphoproliferative bone marrow disorders and implications for therapy. We also review the management and outline some perspectives on new therapy modalities
Observations and modelling of the pre-flare period of the 29 March 2014 X1 flare
MMW and SD acknowledge STFC for support via their PhD Studentships. DML is an Early-Career Fellow, funded by the Leverhulme Trust.On the 29 March 2014 NOAA active region (AR) 12017 produced an X1 flare which was simultaneously observed by an unprecedented number of observatories. We have investigated the pre-flare period of this flare from 14:00 UT until 19:00 UT using joint observations made by the Interface Region Imaging Spectrometer (IRIS) and the Hinode Extreme Ultraviolet Imaging Spectrometer (EIS). Spectral lines providing coverage of the solar atmosphere from chromosphere to the corona were analysed to investigate pre-flare activity within the AR. The results of the investigation have revealed evidence of strongly blue-shifted plasma flows, with velocities up to 200 km-1, being observed 40 minutes prior to flaring. These flows are located along the filament present in the active region and are both spatially discrete and transient. In order to constrain the possible explanations for this activity, we undertake non-potential magnetic field modelling of the active region. This modelling indicates the existence of a weakly twisted flux rope along the polarity inversion line in the region where a filament and the strong pre-flare flows are observed. We then discuss how these observations relate to the current models of flare triggering. We conclude that the most likely drivers of the observed activity are internal reconnection in the flux rope, early onset of the flare reconnection, or tether cutting reconnection along the filament.Publisher PDFPeer reviewe
Evolution of the magnetic field distribution of active regions
AIMS: Although the temporal evolution of active regions (ARs) is relatively well understood, the processes involved continue to be the subject of investigation. We study how the magnetic field of a series of ARs evolves with time to better characterise how ARs emerge and disperse. METHODS: We examined the temporal variation in the magnetic field distribution of 37 emerging ARs. A kernel density estimation plot of the field distribution was created on a log-log scale for each AR at each time step. We found that the central portion of the distribution is typically linear, and its slope was used to characterise the evolution of the magnetic field. RESULTS: The slopes were seen to evolve with time, becoming less steep as the fragmented emerging flux coalesces. The slopes reached a maximum value of ∼-1.5 just before the time of maximum flux before becoming steeper during the decay phase towards the quiet-Sun value of ∼-3. This behaviour differs significantly from a classical diffusion model, which produces a slope of -1. These results suggest that simple classical diffusion is not responsible for the observed changes in field distribution, but that other processes play a significant role in flux dispersion. CONCLUSIONS. We propose that the steep negative slope seen during the late-decay phase is due to magnetic flux reprocessing by (super)granular convective cells
Evolution of the magnetic field distribution of active regions
Aims. Although the temporal evolution of active regions (ARs) is relatively well understood, the processes involved continue to be the subject of investigation. We study how the magnetic field of a series of ARs evolves with time to better characterise how ARs emerge and disperse. Methods. We examine the temporal variation in the magnetic field distribution of 37 emerging ARs. A kernel density estimation plot of the field distribution was created on a log-log scale for each AR at each time step. We found that the central portion of the distribution is typically linear and its slope was used to characterise the evolution of the magnetic field. Results. The slopes were seen to evolve with time, becoming less steep as the fragmented emerging flux coalesces. The slopes reached a maximum value of ∼ −1.5 just before the time of maximum flux before becoming steeper during the decay phase towards the quiet Sun value of ∼ −3. This behaviour differs significantly from a classical diffusion model, which produces a slope of −1. These results suggest that simple classical diffusion is not responsible for the observed changes in field distribution, but that other processes play a significant role in flux dispersion
- …