931 research outputs found

    Spherical Redshift Distortions

    Get PDF
    Peculiar velocities induce apparent line of sight displacements of galaxies in redshift space, distorting the pattern of clustering in the radial versus transverse directions. On large scales, the amplitude of the distortion yields a measure of the dimensionless linear growth rate βΩ0.6/b\beta \approx \Omega^{0.6}/b, where Ω\Omega is the cosmological density and bb the linear bias factor. To make the maximum statistical use of the data in a wide angle redshift survey, and for the greatest accuracy, the spherical character of the distortion needs to be treated properly, rather than in the simpler plane parallel approximation. In the linear regime, the redshift space correlation function is described by a spherical distortion operator acting on the true correlation function. It is pointed out here that there exists an operator, which is essentially the logarithmic derivative with respect to pair separation, which both commutes with the spherical distortion operator, and at the same time defines a characteristic scale of separation. The correlation function can be expanded in eigenfunctions of this operator, and these eigenfunctions are eigenfunctions of the distortion operator. Ratios of the observed amplitudes of the eigenfunctions yield measures of the linear growth rate β\beta in a manner independent of the shape of the correlation function. More generally, the logarithmic derivative /lnr\partial/\partial\ln r with respect to depth rr, along with the square L2L^2 and component LzL_z of the angular momentum operator, form a complete set of commuting operators for the spherical distortion operator acting on the density. The eigenfunctions of this complete set of operators are spherical waves about the observer, with radial part lying in logarithmic real or Fourier space.Comment: 15 pages, with 1 embedded EPS figur

    How beneficial are thiazolidinediones for diabetes mellitus?

    Get PDF
    The thiazolidinediones pioglitazone (Actos) and rosiglitazone (Avandia) are effective at lowering fasting plasma glucose (FPG) and glycosylated hemoglobin (Hb A1c) in patients with type 2 diabetes when used either as monotherapy or in combination with sulfonylureas, metformin, or insulin. The glucose-lowering effects appear comparable with those of sulfonylureas and metformin alone. Currently, there are no randomized trials directly comparing patient-oriented outcomes of the thiazolidinediones with those of sulfonylureas and metformin. Grade of recommendation: B (on the basis of extrapolations from randomized trials and low quality randomized trials)

    Observations of a rotating macrospicule associated with an X-ray jet

    Full text link
    We attempt to understand the driving mechanism of a macrospicule and its relationship with a coronal jet. We study the dynamics of a macrospicule and an associated coronal jet captured by multi-spacecraft observations. Doppler velocities both in the macrospicule and the coronal jet are determined by EIS and SUMER spectra. Their temporal evolution is studied using X-ray and He II 304 images. A blueshift of -120+/-15 km/s is detected on one side of the macrospicule, while a redshift of 50+/-6 km/s is found at the base of the other side. The inclination angle of the macrospicule inferred from a stereoscopic analysis with STEREO suggests that the measured Doppler velocities can be attributed to a rotating motion of the macrospicule rather than a radial flow or an expansion. The macrospicule is driven by the unfolding motion of a twisted magnetic flux rope, while the associated X-ray jet is a radial outflow.Comment: 4 pages, 3 figures, accepted for publication in A&

    What is the true nature of blinkers?

    Get PDF
    Aims. The aim of this work is to identify the true nature of the transient EUV brightenings, called blinkers. Methods. Co-spatial and co-temporal multi-instrument data, including imaging (EUVI/STEREO, XRT and SOT/Hinode), spectroscopic (CDS/SoHO and EIS/Hinode) and magnetogram (SOT/Hinode) data, of an isolated equatorial coronal hole were used. An automatic program for identifying transient brightenings in CDS O v 629 Å, EUVI 171 Å and XRT was applied. Results. We identified 28 blinker groups in the CDS O v 629 Å raster images. All CDS O v 629 Å blinkers showed counterparts in EUVI 171 Å and 304 Å images. We classified these blinkers into two categories, one associated with coronal counterparts and other with no coronal counterparts as seen in XRT images and EIS Fe xii 195.12 Å raster images. Around two-thirds of the blinkers show coronal counterparts and correspond to various events like EUV/X-ray jets, brightenings in coronal bright points or foot-point brightenings of larger loops. These brightenings occur repetitively and have a lifetime of around 40 min at transition region temperatures. The remaining blinker groups with no coronal counterpart in XRT and EIS Fe xii 195.12 Å appear as point-like brightenings and have chromospheric/transition region origin. They take place only once and have a lifetime of around 20 min. In general, lifetimes of blinkers are different at different wavelengths, i.e. different temperatures, decreasing from the chromosphere to the corona. Conclusions. This work shows that the term blinker covers a range of phenomena. Blinkers are the EUV response of various transient events originating at coronal, transition region and chromospheric heights. Hence, events associated with blinkers contribute to the formation and maintenance of the temperature gradient in the transition region and the corona

    Dynamics and plasma properties of an X-ray jet from SUMER, EIS, XRT and EUVI A & B simultaneous observations

    Full text link
    Small-scale transient phenomena in the quiet Sun are believed to play an important role in coronal heating and solar wind generation. One of them named as "X-ray jet" is the subject of our study. We indent to investigate the dynamics, evolution and physical properties of this phenomenon. We combine spatially and temporally multi-instrument observations obtained simultaneously with the SUMER spectrometer onboard SoHO, EIS and XRT onboard Hinode, and EUVI/SECCHI onboard the Ahead and Behind STEREO spacecrafts. We derive plasma parameters such as temperatures and densities as well as dynamics by using spectral lines formed in the temperature range from 10 000 K to 12 MK. We also use image difference technique to investigate the evolution of the complex structure of the studied phenomenon. With the available unique combination of data we were able to establish that the formation of a jet-like event is triggered by not one but several energy depositions which are most probably originating from magnetic reconnection. Each energy deposition is followed by the expulsion of pre-existing or new reconnected loops and/or collimated flow along open magnetic field lines. We derived in great detail the dynamic process of X-ray jet formation and evolution. We also found for the first time spectroscopically in the quiet Sun a temperature of 12~MK and density of 4 10^10~cm^-3 in a reconnection site. We raise an issue concerning an uncertainty in using the SUMER Mg X 624.9 A line for coronal diagnostics. We clearly identified two types of up-flow: one collimated up-flow along open magnetic field lines and a plasma cloud formed from the expelled BP loops. We also report a cooler down-flow along closed magnetic field lines. A comparison is made with a model developed by Moreno-Insertis \etal\ (2008).Comment: 15 pages, 15 figure

    On the ultraviolet signatures of small scale heating in coronal loops

    Full text link
    Studying the statistical properties of solar ultraviolet emission lines could provide information about the nature of small scale coronal heating. We expand on previous work to investigate these properties. We study whether the predicted statistical distribution of ion emission line intensities produced by a specified heating function is affected by the isoelectronic sequence to which the ion belongs, as well as the characteristic temperature at which it was formed. Particular emphasis is placed on the strong resonance lines belonging to the lithium isoelectronic sequence. Predictions for emission lines observed by existing space-based UV spectrometers are given. The effects on the statistics of a line when observed with a wide-band imaging instrument rather than a spectrometer are also investigated. We use a hydrodynamic model to simulate the UV emission of a loop system heated by nanoflares on small, spatially unresolved scales. We select lines emitted at similar temperatures but belonging to different isoelectronic groups: Fe IX and Ne VIII, Fe XII and Mg X, Fe XVII, Fe XIX and Fe XXIV. Our simulations confirm previous results that almost all lines have an intensity distribution that follows a power-law, in a similar way to the heating function. However, only the high temperature lines best preserve the heating function's power law index (Fe XIX being the best ion in the case presented here). The Li isoelectronic lines have different statistical properties with respect to the lines from other sequences, due to the extended high temperature tail of their contribution functions. However, this is not the case for Fe XXIV which may be used as a diagnostic of the coronal heating function. We also show that the power-law index of the heating function is effectively preserved when a line is observed by a wide-band imaging instrument rather than a spectromenter

    Soft X-ray analysis of a loop flare on the Sun

    Get PDF
    We present the results of an analysis of soft X-ray images for a solar flare which occurred on 1992 July 11. This flare, as seen in Yohkoh Soft X-ray Telescope (SXT) images was of comparatively simple geometry, consisting of two bright footpoints early in the flare with a bright loop seen later in the flare. We examine how closely this flare compares with the supposed paradigm of a confined simple-loop flare. Closer examination of the SXT images reveals that the flare structure consisted of at least two adjacent loops, one much fainter than the other. We examine the brighter of the two soft X-ray loops. The SXT images reveal an apparent slow, northward motion of this loop (roughly transverse to its major axis). Examination of derived emission measure and temperature images also indicate an apparent northward motion. In addition, we find an increase in the cross-sectional width at the top of the loop with time. Emission measure maps derived from the SXT images also indicates an apparent broadening of the loop-top region. We infer that the apparent northward motion and the apparent broadening of the soft X-ray emission can be explained in a reconnection scenario where successive magnetic field structures do not lie in a plane but are tilted to the south of the line of sight but with successively brightening loops oriented at less tilted angles. Halpha images for this flare reveal an evolution from a few brilliant points to a short two- ribbon-like appearance. Comparison of the SXT images with the Halpha images shows that the Halpha patches are aligned with the footpoints of the soft X-ray loops, suggesting the presence of a small arcade structure. There is no clear evidence for an eruptive signature in our observations nor in reports from other observations. The lack of an eruptive signature could suggest that the flare may have been a confined simple-loop flare, but this is not compelling due to a gap in the coronal observations prior to and early in the event. Analysis of our observations indicate that the flare exhibited characteristics suggesting that it may be better understood as a mini-arcade flare. These results casts doubt on the validity of the supposed paradigm of a confined simple-loop flare, at least for this flare. They indicate that even an apparently simple-loop flare may be considered to be a variety of arcade flare. We also find an effect which, to our knowledge, has not been reported before: the hot flaring regions later become cooler than the surrounding quiescent corona. That is, the flare loops do not evolve into bright active region loops, but into cooler loops. This may indicate an increase in the efficiency of the cooling mechanism or a transformed equilibrium state within the flaring loops

    Flows in the solar atmosphere due to the eruptions on the 15th July, 2002

    Get PDF
    <p>Which kind of flows are present during flares? Are they compatible with the present understanding of energy release and which model best describes the observations? We analyze successive flare events in order to answer these questions. The flares were observed in the magnetically complex NOAA active region (AR) 10030 on 15 July 2002. One of them is of GOES X-class. The description of these flares and how they relate to the break-out model is presented in Gary & Moore (2004). The Coronal Diagnostic Spectrometer on board SOHO observed this active region for around 14 h. The observed emission lines provided data from the transition region to the corona with a field of view covering more than half of the active region. In this paper we analyse the spatially resolved flows seen in the atmosphere from the preflare to the flare stages. We find evidence for evaporation occurring before the impulsive phase. During the main phase, the ongoing magnetic reconnection is demonstrated by upflows located at the edges of the flare loops (while downflows are found in the flare loops themselves). We also report the impact of a filament eruption on the atmosphere, with flows up to 300 km s<sup>-1</sup> observed at transition-region temperatures in regions well away from the location of the pre-eruptive filament. Our results are consistent with the predictions of the break out model before the impulsive phase of the flare; while, as the flare progresses, the directions of the flows are consistent with flare models invoking evaporation followed by cooling and downward plasma motions in the flare loops.</p&gt

    Novel Linkage of Individual and Geographic Data to Study Firearm Violence

    Get PDF
    Firearm violence is the end result of a causative web of individual-level and geographic risk factors. Few, if any, studies of firearm violence have been able to simultaneously determine the population-based relative risks that individuals experience as a result of what they were doing at a specific point in time and where they were, geographically, at a specific point in time. This paper describes the linkage of individual and geographic data that was undertaken as part of a population-based case-control study of firearm violence in Philadelphia. New methods and applications of these linked data relevant to researchers and policymakers interested in firearm violence are also discussed

    Multi-wavelength spectroscopic observation of EUV jet in AR 10960

    Full text link
    We have studied the relationship between the velocity and temperature of a solar EUV jet. The highly accelerated jet occurred in the active region NOAA 10960 on 2007 June 5. Multi-wavelength spectral observations with EIS/Hinode allow us to investigate Doppler velocities at the wide temperature range. We analyzed the three-dimensional angle of the jet from the stereoscopic analysis with STEREO. Using this angle and Doppler velocity, we derived the true velocity of the jet. As a result, we found that the cool jet observed with \ion{He}{2} 256 \AA log10Te[K]=4.9\log_{10}T_e[\rm{K}] = 4.9 is accelerated to around 220km/s220 \rm{km/s} which is over the upper limit of the chromospheric evaporation. The velocities observed with the other lines are under the upper limit of the chromospheric evaporation while most of the velocities of hot lines are higher than that of cool lines. We interpret that the chromospheric evaporation and magnetic acceleration occur simultaneously. A morphological interpretation of this event based on the reconnection model is given by utilizing the multi-instrumental observations.Comment: Accepted for publication in Ap
    corecore