4,506 research outputs found
Mode-selective quantization and multimodal effective models for spherically layered systems
We propose a geometry-specific, mode-selective quantization scheme in coupled
field-emitter systems which makes it easy to include material and geometrical
properties, intrinsic losses as well as the positions of an arbitrary number of
quantum emitters. The method is presented through the example of a spherically
symmetric, non-magnetic, arbitrarily layered system. We follow it up by a
framework to project the system on simpler, effective cavity QED models.
Maintaining a well-defined connection to the original quantization, we derive
the emerging effective quantities from the full, mode-selective model in a
mathematically consistent way. We discuss the uses and limitations of these
effective models
Quantum Plasmonics with multi-emitters: Application to adiabatic control
We construct mode-selective effective models describing the interaction of N
quantum emitters (QEs) with the localised surface plasmon polaritons (LSPs)
supported by a spherical metal nanoparticle (MNP) in an arbitrary geometric
arrangement of the QEs. We develop a general formulation in which the field
response in the presence of the nanosystem can be decomposed into orthogonal
modes with the spherical symmetry as an example. We apply the model in the
context of quantum information, investigating on the possibility of using the
LSPs as mediators of an efficient control of population transfer between two
QEs. We show that a Stimulated Raman Adiabatic Passage configuration allows
such a transfer via a decoherence-free dark state when the QEs are located on
the same side of the MNP and very closed to it, whereas the transfer is blocked
when the emitters are positioned at the opposite sides of the MNP. We explain
this blockade by the destructive superposition of all the interacting plasmonic
modes
Mie plasmons: modes volumes, quality factors and coupling strengths (Purcell factor) to a dipolar emitter
Using either quasi-static approximation or exact Mie expansion, we
characterize the localized surface plasmons supported by a metallic spherical
nanoparticle. We estimate the quality factor and define the effective
volume of the mode in a such a way that coupling strength with a
neighbouring dipolar emitter is proportional to the ratio (Purcell
factor). The role of Joule losses, far-field scattering and mode confinement in
the coupling mechanism are introduced and discussed with simple physical
understanding, with particular attention paid to energy conservation.Comment: (in press) International Journal of Optics (2011
Upper-bound solution for the stability of stone-facing embankments
An upper-bound solution for stone-facing embankments is developed to assess the stability of this type of structures. The embankment is treated as a cohesionless granular material whereas the facing is considered as composed of discrete stone blocks, laid dry one on the top of the other, complying with a Mohr-Coulomb interface law. This enables the assessment of the stability of the structure, solely resorting to its geometry, unit weight, and the friction angles of the embankment and facings. The model is finally used to assess the stability of an existing rockfill dam in the Pyrénées (France). Comparison with Distinct Element Method results and parametric analyses prove the robustness of the model on this case study
2D DC potential structures induced by RF sheaths coupled with transverse currents in front of ICRF antennas
12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France)Sheaths are space charge regions at the plasma-wall. They are induced by the differential inertia between ions and electrons, and without external perturbation, they create a floating potential between the neutral plasma and the walls. In Tokamaks, these sheaths are locally enhanced by the RF (radiofrequency) electric field generated by the ICRF (ion cyclotron resonance frequency) antennas used to heat magnetic fusion plasmas at very high temperature. RF sheaths are located at the connection points of magnetic field lines to the wall, or to the bumpers which protect the antenna or to any part of the antenna structure. The asymmetric behaviour of these oscillating sheaths rectifies RF potentials in the plasma in front of antenna, to finally create nonlinearly a DC potential which can be much higher than the floating potential. We study specifically how the space-time distribution of these RF and DC rectified potentials is modified when nearby flux tubes are allowed to exchange perpendicular polarization current. To simulate that, a 2D fluid code has been implemented to compute the 2D RF potential map in a plane perpendicular to magnetic lines, and within the flute approximation the whole 3D potential map is deduced. In simulation, we consider a homogeneous transverse conductivity and use a “test” potential map having, in absence of transverse currents, a Gaussian shape characterized by its width r0 and its amplitude f0. As a function of these 2 parameters (normalized respectively to a characteristic length for transverse transport and to the local temperature), we can estimate the peaking and the smoothing of the potential structure in the presence of polarization current. So, we are able to determine, for typical plasmas, the amplitude of DC potential peaks , particularly on antenna's corners , where hot spots appear during a shot. In typical Tore Supra conditions near antenna corners potential structures less than centimetric are involved in the 2D effects. The next step will consist in studying space transition between several areas characterized by different perpendicular conductivities, which can be modelled via effective connection lengths in our 2D fluid code. This more precise approach will be useful to obtain the potential structures in front of each part of the complex antenna's geometry and to minimize potential peaks generating many spurious perturbations in the plasma edge for long duration discharge as in ITER reactor
Micromegas in a Bulk
In this paper we present a novel way to manufacture the bulk Micromegas
detector. A simple process based on the PCB (Printed Circuit Board) technology
is employed to produce the entire sensitive detector. Such fabrication process
could be extended to very large area detectors made by the industry. The low
cost fabrication together with the robustness of the electrode materials will
make it extremely attractive for several applications ranging from particle
physics and astrophysics to medicineComment: 6 pages, 4 figure
Micromegas TPC studies at high magnetic fields using the charge dispersion signal
The International Linear Collider (ILC) Time Projection Chamber (TPC)
transverse space-point resolution goal is 100 microns for all tracks including
stiff 90 degree tracks with the full 2 meter drift. A Micro Pattern Gas
Detector (MPGD) readout TPC can achieve the target resolution with existing
techniques using 1 mm or narrower pads at the expense of increased detector
cost and complexity. The new MPGD readout technique of charge dispersion can
achieve good resolution without resorting to narrow pads. This has been
demonstrated previously for 2 mm x 6 mm pads with GEMs and Micromegas in cosmic
ray tests and in a KEK beam test in a 1 Tesla magnet. We have recently tested a
Micromegas-TPC using the charge dispersion readout concept in a high field
super-conducting magnet at DESY. The measured Micromegas gain was found to be
constant within 0.5% for magnetic fields up to 5 Tesla. With the strong
suppression of transverse diffusion at high magnetic fields, we measure a flat
50 micron resolution at 5 Tesla over the full 15 cm drift length of our
prototype TPC.Comment: 7 pages, 3 figure
Non - linear radio frequency wave : sheath interaction in magnetized plasma edge : the role of the fast wave
Self consistent radio-frequency wave propagation and peripheral direct current plasma biasing: Simplified three dimensional non-linear treatment in the 'wide sheath' asymptotic regime
Precise determination of stellar parameters of the ZZ Ceti and DAZ white dwarf GD 133 through asteroseismology
An increasing number of white dwarf stars show atmospheric chemical
composition polluted by heavy elements accreted from debris disk material. The
existence of such debris disks strongly suggests the presence of one or more
planet(s) whose gravitational interaction with rocky planetesimals is
responsible for their disruption by tidal effect. The ZZ Ceti pulsator and
polluted DAZ white dwarf GD 133 is a good candidate for searching for such a
potential planet. We started in 2011 a photometric follow-up of its pulsations.
As a result of this work in progress, we used the data gathered from 2011 to
2015 to make an asteroseismological analysis of GD 133, providing the star
parameters from a best fit model with / = 0.630 0.002,
= 12400 K 70 K, log() = -2.00 0.02,
log() = -4.50 0.02 and determining a rotation period of
7 days.Comment: 10 pages, 13 figures, accepted by MNRA
- …
