2,153 research outputs found

    Electronic structure near the 1/8-anomaly in La-based cuprates

    Full text link
    We report an angle resolved photoemission study of the electronic structure of the pseudogap state in \NdLSCO (Tc<7T_c<7 K). Two opposite dispersing Fermi arcs are the main result of this study. The several scenarios that can explain this observation are discussed.Comment: A high-resolution version can be found at http://lns.web.psi.ch/lns/download/Pockets/arXiv.pd

    Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates

    Full text link
    Angle-resolved photoemission on underdoped La1.895_{1.895}Sr0.105_{0.105}CuO4_4 reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of the Bogoliubov dispersion in the superconducting state. We also observe that the superconducting and pseudogaps have the same d-wave form with the same amplitude. Our observations provide direct evidence for preformed Cooper pairs, implying that the pseudogap phase is a precursor to superconductivity

    The coherent {\it d}-wave superconducting gap in underdoped La2x_{2-x}Srx_{x}CuO4_4 as studied by angle-resolved photoemission

    Full text link
    We present angle-resolved photoemission spectroscopy (ARPES) data on moderately underdoped La1.855_{1.855}Sr0.145_{0.145}CuO4_4 at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple {\it d}-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La1.895_{1.895}Sr0.105_{0.105}CuO4_4 also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.Comment: Accepted by Phys. Rev. Let

    Measles vaccination in the presence or absence of maternal measles antibody: impact on child survival.

    Get PDF
    BACKGROUND: Measles vaccine (MV) has a greater effect on child survival when administered in early infancy, when maternal antibody may still be present. METHODS: To test whether MV has a greater effect on overall survival if given in the presence of maternal measles antibody, we reanalyzed data from 2 previously published randomized trials of a 2-dose schedule with MV given at 4-6 months and at 9 months of age. In both trials antibody levels had been measured before early measles vaccination. RESULTS: In trial I (1993-1995), the mortality rate was 0.0 per 1000 person-years among children vaccinated with MV in the presence of maternal antibody and 32.3 per 1000 person-years without maternal antibody (mortality rate ratio [MRR], 0.0; 95% confidence interval [CI], 0-.52). In trial II (2003-2007), the mortality rate was 4.2 per 1000 person-years among children vaccinated in presence of maternal measles antibody and 14.5 per 1000 person-years without measles antibody (MRR, 0.29; 95% CI, .09-.91). Possible confounding factors did not explain the difference. In a combined analysis, children who had measles antibody detected when they received their first dose of MV at 4-6 months of age had lower mortality than children with no maternal antibody, the MRR being 0.22 (95% CI, .07-.64) between 4-6 months and 5 years. CONCLUSIONS: Child mortality in low-income countries may be reduced by vaccinating against measles in the presence of maternal antibody, using a 2-dose schedule with the first dose at 4-6 months (earlier than currently recommended) and a booster dose at 9-12 months of age. CLINICAL TRIALS REGISTRATION: NCT00168558

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site

    Get PDF
    Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport
    corecore