14,007 research outputs found
Interferometric tomography of continuous fields with incomplete projections
Interferometric tomography in the presence of an opaque object is investigated. The developed iterative algorithm does not need to augment the missing information. It is based on the successive reconstruction of the difference field, the difference between the object field to be reconstructed and its estimate, only in the difined region. The application of the algorithm results in stable convergence
Stochastically ordered subpopulations and optimal burn-in procedure
Burn-in is a widely used engineering method which is adopted to eliminate defective items before they are shipped to customers or put into the field operation. In the studies of burn-in, the assumption of bathtub shaped failure rate function is usually employed and optimal burn-in procedures are investigated. In this paper, however, we assume that the population is composed of two ordered subpopulations and optimal burn-in procedures are studied in this context. Two types of risks are defined and an optimal burn-in procedure, which minimizes the weighted risks is studied. The joint optimal solutions for the optimal burn-in procedure, which minimizes the mean number of repairs during the field operation, are also investigated.
Weak ties: Subtle role of information diffusion in online social networks
As a social media, online social networks play a vital role in the social
information diffusion. However, due to its unique complexity, the mechanism of
the diffusion in online social networks is different from the ones in other
types of networks and remains unclear to us. Meanwhile, few works have been
done to reveal the coupled dynamics of both the structure and the diffusion of
online social networks. To this end, in this paper, we propose a model to
investigate how the structure is coupled with the diffusion in online social
networks from the view of weak ties. Through numerical experiments on
large-scale online social networks, we find that in contrast to some previous
research results, selecting weak ties preferentially to republish cannot make
the information diffuse quickly, while random selection can achieve this goal.
However, when we remove the weak ties gradually, the coverage of the
information will drop sharply even in the case of random selection. We also
give a reasonable explanation for this by extra analysis and experiments.
Finally, we conclude that weak ties play a subtle role in the information
diffusion in online social networks. On one hand, they act as bridges to
connect isolated local communities together and break through the local
trapping of the information. On the other hand, selecting them as preferential
paths to republish cannot help the information spread further in the network.
As a result, weak ties might be of use in the control of the virus spread and
the private information diffusion in real-world applications.Comment: Final version published in PR
A Concise Total Synthesis of (--)-Maoecrystal Z
The first total synthesis of (--)-maoecrystal Z
is described. The key steps of the synthesis include a
diastereoselective Ti^(III)-mediated reductive epoxide coupling reaction and a diastereoselective Sm^(II)-mediated reductive cascade cyclization reaction. These transformations enabled the preparation of (--)-maoecrystal Z in only 12 steps from (--)-γ-cyclogeraniol
Superfluid-insulator transition of the Josephson junction array model with commensurate frustration
We have studied the rationally frustrated Josephson-junction array model in
the square lattice through Monte Carlo simulations of D XY-model. For
frustration , the model at zero temperature shows a continuous
superfluid-insulator transition. From the measurement of the correlation
function and the superfluid stiffness, we obtain the dynamical critical
exponent and the correlation length critical exponent . While the dynamical critical exponent is the same as that for cases
, 1/2, and 1/3, the correlation length critical exponent is surprisingly
quite different. When , we have the nature of a first-order transition.Comment: RevTex 4, to appear in PR
Recommended from our members
Safety verification of ADA programs in MURPHY
MURPHY is a experimental methodology, which will include an integrated tool set, for building safety-critical, real-time software. Although it is language independent, many safety-critical software projects are currently planning to use Ada. This paper presents the semantic templates for the verification of the safety of Ada programs using Software Fault Tree Analysis. An example is shown of applying the technique to an Ada program, and the tools in the MURPHY tool set to aid in this type of analysis are described
Hydrodynamic simulations with the Godunov SPH
We present results based on an implementation of the Godunov Smoothed
Particle Hydrodynamics (GSPH), originally developed by Inutsuka (2002), in the
GADGET-3 hydrodynamic code. We first review the derivation of the GSPH
discretization of the equations of moment and energy conservation, starting
from the convolution of these equations with the interpolating kernel. The two
most important aspects of the numerical implementation of these equations are
(a) the appearance of fluid velocity and pressure obtained from the solution of
the Riemann problem between each pair of particles, and (b the absence of an
artificial viscosity term. We carry out three different controlled
hydrodynamical three-dimensional tests, namely the Sod shock tube, the
development of Kelvin-Helmholtz instabilities in a shear flow test, and the
"blob" test describing the evolution of a cold cloud moving against a hot wind.
The results of our tests confirm and extend in a number of aspects those
recently obtained by Cha (2010): (i) GSPH provides a much improved description
of contact discontinuities, with respect to SPH, thus avoiding the appearance
of spurious pressure forces; (ii) GSPH is able to follow the development of
gas-dynamical instabilities, such as the Kevin--Helmholtz and the
Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl
structures in the shear-flow test and the dissolution of the cold cloud in the
"blob" test.
We also discuss in detail the effect on the performances of GSPH of changing
different aspects of its implementation. The results of our tests demonstrate
that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled
to an N-body solver, for astrophysical and cosmological applications.
[abridged]Comment: 19 pages, 13 figures, MNRAS accepted, high resolution version can be
obtained at
http://adlibitum.oats.inaf.it/borgani/html/papers/gsph_hydrosim.pd
- …
