938 research outputs found

    Modal identification of structures from the responses and random decrement signatures

    Get PDF
    The theory and application of a method which utilizes the free response of a structure to determine its vibration parameters is described. The time-domain free response is digitized and used in a digital computer program to determine the number of modes excited, the natural frequencies, the damping factors, and the modal vectors. The technique is applied to a complex generalized payload model previously tested using sine sweep method and analyzed by NASTRAN. Ten modes of the payload model are identified. In case free decay response is not readily available, an algorithm is developed to obtain the free responses of a structure from its random responses, due to some unknown or known random input or inputs, using the random decrement technique without changing time correlation between signals. The algorithm is tested using random responses from a generalized payload model and from the space shuttle model

    A Neuroevolutionary Approach to Stochastic Inventory Control in Multi-Echelon Systems

    Get PDF
    Stochastic inventory control in multi-echelon systems poses hard problems in optimisation under uncertainty. Stochastic programming can solve small instances optimally, and approximately solve larger instances via scenario reduction techniques, but it cannot handle arbitrary nonlinear constraints or other non-standard features. Simulation optimisation is an alternative approach that has recently been applied to such problems, using policies that require only a few decision variables to be determined. However, to find optimal or near-optimal solutions we must consider exponentially large scenario trees with a corresponding number of decision variables. We propose instead a neuroevolutionary approach: using an artificial neural network to compactly represent the scenario tree, and training the network by a simulation-based evolutionary algorithm. We show experimentally that this method can quickly find high-quality plans using networks of a very simple form

    A committee machine gas identification system based on dynamically reconfigurable FPGA

    Get PDF
    This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tin-oxide gas sensors

    Generalizing backdoors

    Get PDF
    Abstract. A powerful intuition in the design of search methods is that one wants to proactively select variables that simplify the problem instance as much as possible when these variables are assigned values. The notion of “Backdoor ” variables follows this intuition. In this work we generalize Backdoors in such a way to allow more general classes of sub-solvers, both complete and heuristic. In order to do so, Pseudo-Backdoors and Heuristic-Backdoors are formally introduced and then applied firstly to a simple Multiple Knapsack Problem and secondly to a complex combinatorial optimization problem in the area of stochastic inventory control. Our preliminary computational experience shows the effectiveness of these approaches that are able to produce very low run times and — in the case of Heuristic-Backdoors — high quality solutions by employing very simple heuristic rules such as greedy local search strategies.

    Comparative Analysis Spread Spectrum and Parity Coding Steganography in E-commerce

    Get PDF
    The transaction data online has increased compared to the previous communications that mostly in the form of voice and text messaging. To improve the security, data must be protected such a way that it cannot be attacked by unauthorized parties. In this case, a good security system must be able to transmit the original information to the second party without having to know the existence and validity by a third party. One of the security systems that can be used is steganography. In this paper, we will compare the performance of Spread Spectrum and Parity Coding in e-commerce based on Android in case of processing time between insertion and retrieval information, and the changing image size during the insertion process. Our experimental results show that parity coding has better performance on client side that use low performance smart phone based on Android operating system and spread spectrum has better performance on blackberry store server that use laptop PC

    Multiple high-pressure phase transitions in BiFeO3

    Full text link
    We investigate the high-pressure phase transitions in BiFeO3 by single crystal and powder x-ray diffraction, as well as single crystal Raman spectroscopy. Six phase transitions are reported in the 0-60 GPa range. At low pressures, up to 15 GPa, 4 transitions are evidenced at 4, 5, 7 and 11 GPa. In this range, the crystals display large unit cells and complex domain structures, which suggests a competition between complex tilt systems and possibly off-center cation displacements. The non polar Pnma phase remains stable over a large pressure range between 11 and 38 GPa, where the distortion (tilt angles) changes only little with pressure. The two high-pressure phase transitions at 38 and 48 GPa are marked by the occurence of larger unit cells and an increase of the distorsion away from the cubic parent perovskite cell. We find no evidence for a cubic phase at high pressure, nor indications that the structure tends to become cubic. The previously reported insulator-to-metal transition at 50 GPa appears to be symmetry breaking.Comment: 11 pages, 8 figure

    Homogenization of the one-dimensional wave equation

    Full text link
    We present a method for two-scale model derivation of the periodic homogenization of the one-dimensional wave equation in a bounded domain. It allows for analyzing the oscillations occurring on both microscopic and macroscopic scales. The novelty reported here is on the asymptotic behavior of high frequency waves and especially on the boundary conditions of the homogenized equation. Numerical simulations are reported

    Symmetry Breaking by Metaheuristic Search

    Get PDF
    Several methods exist for breaking symmetry in constraint problems, but most potentially suffer from high memory requirements, high computational overhead, or both. We describe a new partial symmetry breaking method that can be applied to arbitrary variable/value symmetries. It models dominance detection as a nonstationary optimisation problem, and solves it by resource-bounded metaheuristic search in the symmetry group. It has low memory requirement and computational overhead, yet in preliminary experiments on BIBD design it breaks most symmetries

    A Decision Support System for Computing Optimal (R,S) Policy Parameters

    Get PDF
    Retail replenishment is a high-value activity. According to the US Commerce Department, 1.1trillionininventorysupports1.1 trillion in inventory supports 3.2 trillion in annual US retail sales [...]. Improving distribution centre efficiency of just a few percentage points through advanced automation and real-time replenishment may deliver significant savings and require less capital to be tied up in inventory. 1 An interesting class of production/inventory control problems is the one that considers the single-location, single-product case under non-stationary stochastic demand, fixed production/ordering cost and per-unit holding cost. Exact and efficient approaches for computing optimal production/replenishment decisions are a key factor for achieving profitability in retail business. One of the possible policies that can be adopted to manage stocks is the replenishment cycle policy [6]. In this policy the inventory review times are set under a here-and-now strategy at the beginning of the planning horizon. These decisions are not affected by the actual demand realized in each period. On the other hand, for each inventory review we observe the actual demand realized in former periods to comput
    corecore