2,220 research outputs found

    Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators

    Get PDF
    Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultra-light resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultra-sensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate electrode down to 150\sim 150~nm. These advances in detection and fabrication allow us to reach 0.5 pm/Hz0.5~\mathrm{pm}/\sqrt{\mathrm{Hz}} displacement sensitivity. Thermal vibrations cooled cryogenically at 300~mK are detected with a signal-to-noise ratio as high as 17~dB. We demonstrate 4.3 zN/Hz4.3~\mathrm{zN}/\sqrt{\mathrm{Hz}} force sensitivity, which is the best force sensitivity achieved thus far with a mechanical resonator. Our work is an important step towards imaging individual nuclear spins and studying the coupling between mechanical vibrations and electrons in different quantum electron transport regimes.Comment: 9 pages, 5 figure

    High performance bilayer-graphene Terahertz detectors

    Full text link
    We report bilayer-graphene field effect transistors operating as THz broadband photodetectors based on plasma-waves excitation. By employing wide-gate geometries or buried gate configurations, we achieve a responsivity 1.2V/W(1.3mA/W)\sim 1.2V/W (1.3 mA/W) and a noise equivalent power 2×109W/Hz1/2\sim 2\times 10^{-9} W/Hz^{-1/2} in the 0.29-0.38 THz range, in photovoltage and photocurrent mode. The potential of this technology for scalability to higher frequencies and the development of flexible devices makes our approach competitive for a future generation of THz detection systems.Comment: 8 pages, 5 figures. Submitted to Applied Physics Letter

    Umbilical Cord Knots: Is the Number Related to Fetal Risk?

    Get PDF
    True knots of the umbilical cord (UC) are a rare occurrence and are reported in 0.4–1.2% of deliveries. The compression of true knot of the UC can cause obstruction of the fetal circulation, leading to intra‐uterine growth retardation or fetal death. Predisposing factors for the genesis of the true UC knot are numerous and include all the conditions, which lead to a relatively large uterine volume. This situation may predispose to free and excessive fetal movements. Although not all true knots lead to perinatal complications, they have been associated with adverse pregnancy outcomes, including fetal distress, fetal hypoxia, intra‐uterine growth restriction (IUGR), long‐term neurological damage, caesarean delivery and stillbirth. We present a rare case of operative delivery with vacuum in a multiparous woman at term of pregnancy with a double true knot of the UC. As in most cases, the diagnosis was made after delivery, as there were no fetal symptoms during pregnancy. Some authors assume that 3D power sonography may be useful in the diagnosis of true UC knots. However, 3D power Doppler cannot be considered as a definitive method. There are no specific prenatal indications to induce the physician to look for ultrasound signs suggestive of umbilical true knot. Some studies argue that cases of fetal death and fetal risk are directly related to the number of knots. We also support this thesis, even if further observational and retrospective studies are needed to demonstrate it

    Superselectors: Efficient Constructions and Applications

    Full text link
    We introduce a new combinatorial structure: the superselector. We show that superselectors subsume several important combinatorial structures used in the past few years to solve problems in group testing, compressed sensing, multi-channel conflict resolution and data security. We prove close upper and lower bounds on the size of superselectors and we provide efficient algorithms for their constructions. Albeit our bounds are very general, when they are instantiated on the combinatorial structures that are particular cases of superselectors (e.g., (p,k,n)-selectors, (d,\ell)-list-disjunct matrices, MUT_k(r)-families, FUT(k, a)-families, etc.) they match the best known bounds in terms of size of the structures (the relevant parameter in the applications). For appropriate values of parameters, our results also provide the first efficient deterministic algorithms for the construction of such structures

    Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep

    Get PDF
    The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories

    Comparison of silver nanoparticles confined in nanoporous silica prepared by chemical synthesis and by ultra-short pulsed laser ablation in liquid

    Get PDF
    Hexagonally ordered mesoporous silica materials MCM-41 and SBA-15 have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV-vis spectroscopy. All preparations contained significant amount of 5-50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations

    Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide

    Get PDF
    We report on room temperature detection of terahertz radiation by means of antenna-coupled field effect transistors (FETs) fabricated using epitaxial graphene grown on silicon carbide. The achieved photoresponsivity (similar to 0.25 V/W) and noise equivalent power (similar to 80 nW/root Hz) result from the combined effect of two independent detection mechanisms: over-damped plasma wave rectification and thermoelectric effects, the latter ascribed to the presence of carrier density junctions along the FET channel. The calculated plasmonic and thermoelectric response reproduces qualitatively well the measured photovoltages; the experimentally observed sign-switch demonstrates the stronger contribution of plasmonic detection compared to the thermoelectric one. These results unveil the potential of plasmonic detectors exploiting epitaxial graphene on silicon carbide for fast large area imaging of macroscopic samples
    corecore