28,535 research outputs found

    Synchrotron Origin of the Typical GRB Band Function - A Case Study of GRB 130606B

    Full text link
    We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm & Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Band parameter values can indeed be explained by synchrotron radiation.Comment: 9 pages, 7 figures, 1 tabl

    Quench induced Mott insulator to superfluid quantum phase transition

    Full text link
    Mott insulator to superfluid quenches have been used by recent experiments to generate exotic superfluid phases. While the final Hamiltonian following the sudden quench is that of a superfluid, it is not a priori clear how close the final state of the system approaches the ground state of the superfluid Hamiltonian. To understand the nature of the final state we calculate the temporal evolution of the momentum distribution following a Mott insulator to superfluid quench. Using the numerical infinite time-evolving block decimation approach and the analytical rotor model approximation we establish that the one and two dimensional Mott insulators following the quench equilibriate to thermal states with spatially short-ranged coherence peaks in the final momentum distribution and therefore are not strict superfluids. However, in three dimensions we find a divergence in the momentum distribution indicating the emergence of true superfluid order.Comment: 4.2 pages, 3 Figure

    Direct Evidence of an Eruptive, Filament-Hosting Magnetic Flux Rope Leading to a Fast Solar Coronal Mass Ejection

    Full text link
    Magnetic flux ropes (MFRs) are believed to be at the heart of solar coronal mass ejections (CMEs). A well-known example is the prominence cavity in the low corona that sometimes makes up a three-part white-light (WL) CME upon its eruption. Such a system, which is usually observed in quiet-Sun regions, has long been suggested to be the manifestation of an MFR with relatively cool filament material collecting near its bottom. However, observational evidence of eruptive, filament-hosting MFR systems has been elusive for those originating in active regions. By utilizing multi-passband extreme-ultra-violet (EUV) observations from SDO/AIA, we present direct evidence of an eruptive MFR in the low corona that exhibits a hot envelope and a cooler core; the latter is likely the upper part of a filament that undergoes a partial eruption, which is later observed in the upper corona as the coiled kernel of a fast, WL CME. This MFR-like structure exists more than one hour prior to its eruption, and displays successive stages of dynamical evolution, in which both ideal and non-ideal physical processes may be involved. The timing of the MFR kinematics is found to be well correlated with the energy release of the associated long-duration C1.9 flare. We suggest that the long-duration flare is the result of prolonged energy release associated with the vertical current sheet induced by the erupting MFR.Comment: 14 pages, 9 figures, to be published in The Astrophysical Journal; accompanying animations can be found at https://www.cfa.harvard.edu/~bchen/publications/Chen+2014_MFR

    Helical swimming in Stokes flow using a novel boundary-element method

    Full text link
    We apply the boundary-element method to Stokes flows with helical symmetry, such as the flow driven by an immersed rotating helical flagellum. We show that the two-dimensional boundary integral method can be reduced to one dimension using the helical symmetry. The computational cost is thus much reduced while spatial resolution is maintained. We review the robustness of this method by comparing the simulation results with the experimental measurement of the motility of model helical flagella of various ratios of pitch to radius, along with predictions from resistive-force theory and slender-body theory. We also show that the modified boundary integral method provides reliable convergence if the singularities in the kernel of the integral are treated appropriately.Comment: 30 pages, 10 figure

    Solid superheating observed in two-dimensional strongly-coupled dusty plasma

    Full text link
    It is demonstrated experimentally that strongly-coupled plasma exhibits solid superheating. A 2D suspension of microspheres in dusty plasma, initially self-organized in a solid lattice, was heated and then cooled rapidly by turning laser heating on and off. Particles were tracked using video microscopy, allowing atomistic-scale observation during melting and solidification. During rapid heating, the suspension remained in a solid structure at temperatures above the melting point, demonstrating solid superheating. Hysteresis diagrams did not indicate liquid supercooling in this 2D system.Comment: 9 pages text, 3 figures, in press Physical Review Letters 200
    corecore