1,580 research outputs found
On Measuring Gravitomagnetism via Spaceborne Clocks: A Gravitomagnetic Clock Effect
DOI:10.1002/(SICI)1521-3889(199902)8:2<135The difference in the proper azimuthal periods of revolution of two standard clocks in direct and retrograde orbits about a central rotating mass is proportional to J/Mc^2, where J and M are, respectively, the proper angular momentum and mass of the source. In connection with this gravitomagnetic clock effect, we explore the possibility of using spaceborne standard clocks for detecting the gravitomagnetic field of the Earth. It is shown that this approach to the measurement of the gravitomagnetic field is, in a certain sense, theoretically equivalent to the Gravity Probe-B concept.This work has been supported in part by the Alexander von Humboldt Foundation
Dihydrofolate Reductase Gene Variations in Susceptibility to Disease and Treatment Outcomes
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate to tetrahydrofolate (THF). THF is needed for the action of folate-dependent enzymes and is thus essential for DNA synthesis and methylation. The importance of this reaction is demonstrated by the effectiveness of antifolate medications used to treat cancer by inhibiting DHFR, thereby depleting THF and slowing DNA synthesis and cell proliferation. Due to the pivotal role that DHFR plays in folate metabolism and cancer treatment, changes in the level of DHFR expression can affect susceptibility to a variety of diseases dependent on folate status such as spina bifida and cancer. Likewise, variability in DHFR expression can affect sensitivity to anti-cancer drugs such as the folate antagonist methotrexate. Alterations in DHFR expression can be due to polymorphisms in the DHFR gene. Several variations have recently been described in DHFR, including promoter polymorphisms, the 19-bp deletion allele and variations in 3’UTR. These polymorphisms seem to be functional, affecting mRNA levels through various interesting mechanisms, including regulation through RNA interference. Several groups have assessed the association of these polymorphisms with folate levels, risk of cancer and spina bifida as well as the outcome of diseases treated with MTX. The latter may lead to different treatment schedules, improving treatment efficacy and/or allowing for a reduction in drug side effects. This review will summarize present knowledge regarding the predictive potential of DHFR polymorphisms in disease and treatment
Narrow-Band Survey of the GOODS Fields: Search for Lyman-Alpha Emitters at z = 5.7
We present results from optical narrow-band lambda_c = 8150A ~ and Delta
lambda = 120A) observations of the Great Observatories Origins Deep Survey
(GOODS) fields, using Suprime-Cam on the Subaru Telescope. Using these
narrow-band data, we then perform a survey of Lyman alpha Emitters (LAEs) at
z~5.7. The LAE survey covers an area of approx 320 arcmin^2 and a co-moving
volume of ~8.0 x 10^4 Mpc^3. We found a total of 10 (GOODS-N) and 4 (GOODS-S)
LAE candidates at z~5.7. We perform a study of the spatial distribution, space
density, and star formation properties of the LAEs at z~5.7.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical
Journa
The Evolution of the Optical and Near-Infrared Galaxy Luminosity Functions and Luminosity Densities to z~2
Using Hubble Space Telescope and ground-based U through K- band photometry
from the Great Observatories Origins Deep Survey (GOODS), we measure the
evolution of the luminosity function and luminosity density in the rest-frame
optical (UBR) to z ~ 2, bridging the poorly explored ``redshift desert''
between z~1 and z~2. We also use deep near-infrared observations to measure the
evolution in the rest-frame J-band to z~1. Compared to local measurements from
the SDSS, we find a brightening of the characteristic magnitude, (M*), by ~2.1,
\~0.8 and ~0.7 mag between z=0.1 and z=1.9, in U, B, and R bands, respectively.
The evolution of M* in the J-band is in the opposite sense, showing a dimming
between redshifts z=0.4 and z=0.9. This is consistent with a scenario in which
the mean star formation rate in galaxies was higher in the past, while the mean
stellar mass was lower, in qualitative agreement with hierarchical galaxy
formation models. We find that the shape of the luminosity function is strongly
dependent on spectral type and that there is strong evolution with redshift in
the relative contribution from the different spectral types to the luminosity
density.
We find good agreement in the luminosity function derived from an R-selected
and a K-selected sample at z~1, suggesting that optically selected surveys of
similar depth (R < 24) are not missing a significant fraction of objects at
this redshift relative to a near-infrared-selected sample. We compare the
rest-frame B-band luminosity functions from z~0--2 with the predictions of a
semi-analytic hierarchical model of galaxy formation, and find qualitatively
good agreement. In particular, the model predicts at least as many optically
luminous galaxies at z~1--2 as are implied by our observations.Comment: 43 pages; 15 Figures; 5 Tables, Accepted for publication in Ap.
The Faint End Slopes Of Galaxy Luminosity Functions In The COSMOS 2-Square Degree Field
We examine the faint-end slope of the rest-frame V-band luminosity function
(LF), with respect to galaxy spectral type, of field galaxies with redshift
z<0.5, using a sample of 80,820 galaxies with photometric redshifts in the
Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined,
the LF slope, alpha, ranges from -1.24 to -1.12, from the lowest redshift bin
to the highest. In the lowest redshift bin (0.02<z<0.1), where the magnitude
limit is M(V) ~ -13, the slope ranges from ~ -1.1 for galaxies with early-type
spectral energy distributions (SEDs), to ~ -1.9 for galaxies with
low-extinction starburst SEDs. In each galaxy SED category (Ell, Sbc, Scd/Irr,
and starburst), the faint-end slopes grow shallower with increasing redshift;
in the highest redshift bin (0.4<z<0.5), the slope is ~ -0.5 and ~ -1.3 for
early-types and starbursts respectively. The steepness of alpha at lower
redshift could be qualitatively explained by large numbers of faint dwarf
galaxies, perhaps of low surface brightness, which are not detected at higher
redshifts.Comment: 24 pages including 5 figures, accepted to ApJ
Analyzing Islamic Architecture Visual Quality in Bushehr City; Case Study: Religious Space Kazeruni Barhah (Hosseiniye)
Islamic architecture can be studied from different aspects. This paper introduces a religious place in Bushehr city of Iran, a Bahrah or Hosseiniye that is used in especial religious ceremony and was built a century ago and after recent renovations is still in use and applicable. The research tries to quantify and analyze its visual quality as an important quality in the built environment with a tool called isovist in Syntax 2D software. In this study isovist indexes of six different spaces have been evaluated in this. The research shows interesting findings of spatial form and location and its visibility; for example it shows that spaces with circulation role have more visibility also spaces of the higher floor show higher visibility than the ground floor
Gauge-Dependent Cosmological "Constant"
When the cosmological constant of spacetime is derived from the 5D
induced-matter theory of gravity, we show that a simple gauge transformation
changes it to a variable measure of the vacuum which is infinite at the big
bang and decays to an astrophysically-acceptable value at late epochs. We
outline implications of this for cosmology and galaxy formation.Comment: 14 pages, no figures, expanded version to be published in Class.
Quantum Gra
A Novel Heterophilic Antibody Interaction Involves IgG4
IgG4 has been implicated in a diverse set of complex pathologies - e.g. autoimmune pancreatitis (AIP), idiopathic membranous nephropathy - and carries unique features including lack of activation of the classical complement pathway and a dynamic Fab-arm exchange. We recently showed that the rheumatoid factor (RF)-like activity of IgG4 is achieved through a hitherto unknown, Fc-Fc (and not Fab-Fc as is the case in classical RF; CRF) interaction; hence the name, novel RF (NRF). Here, we further explore the resemblance/difference between CRF and NRF. As heterophilic interactions of human IgM RF (CRF) are well known, we checked whether this is the case for IgG4. Human IgG4 showed variable reactivity to animal IgGs: reacting intensely with rabbit and mouse IgGs, but weakly with others. The binding to rabbit IgG was not through the Fab (as in CRF) but via the Fc piece, as was recently shown for human IgG (NRF). This binding correlates with the IgG4 concentration per se and could therefore be of diagnostic usage and incidentally explain some observed interferences in biological assays. In conclusion, here is defined a novel heterophilic antibody interaction and is established the universality of the unique Fc-Fc binding, both involving IgG4.ArticleSCANDINAVIAN JOURNAL OF IMMUNOLOGY. 71(2):109-114 (2010)journal articl
- …