7,999 research outputs found

    Vection in depth during treadmill walking

    Get PDF
    Vection has typically been induced in stationary observers (ie conditions providing visual-only information about self-motion). Two recent studies have examined vection during active treadmill walking--one reported that treadmill walking in the same direction as the visually simulated self-motion impaired vection (Onimaru et al, 2010 Journal of Vision 10(7):860), the other reported that it enhanced vection (Seno et al, 2011 Perception 40 747-750; Seno et al, 2011 Attention, Perception, & Psychophysics 73 1467-1476). Our study expands on these earlier investigations of vection during observer active movement. In experiment 1 we presented radially expanding optic flow and compared the vection produced in stationary observers with that produced during walking forward on a treadmill at a 'matched' speed. Experiment 2 compared the vection induced by forward treadmill walking while viewing expanding or contracting optic flow with that induced by viewing playbacks of these same displays while stationary. In both experiments subjects' tracked head movements were either incorporated into the self-motion displays (as simulated viewpoint jitter) or simply ignored. We found that treadmill walking always reduced vection (compared with stationary viewing conditions) and that simulated viewpoint jitter always increased vection (compared with constant velocity displays). These findings suggest that while consistent visual-vestibular information about self-acceleration increases vection, biomechanical self-motion information reduces this experience (irrespective of whether it is consistent or not with the visual input)

    Application of modern control and nonlinear estimation techniques

    Get PDF
    Control and nonlinear estimation techniques applied to optimal guidance of low thrust spacecraft, planetary soft landings, and feedback systems desig

    Trajectories of objectively measured physical activity in free-living older men.

    Get PDF
    BACKGROUND: The steep decline in physical activity (PA) among the oldest old is not well understood; there is little information about the patterns of change in PA and sedentary behaviour (SB) in older people. Longitudinal data on objectively measured PA data can give insights about how PA and SB change with age. METHODS: Men age 70-90 yr, from a United Kingdom population-based cohort wore a GT3X accelerometer over the hip annually on up to three occasions (56%, 50%, and 51% response rates) spanning 2 yr. Multilevel models were used to estimate change in activity. Men were grouped according to achieving ≥150 min·wk of MVPA in bouts of ≥10 min (current guidelines) at two or three time points. RESULTS: A total of 1419 ambulatory men had ≥600 min wear time on ≥3 d at ≥2 time points. At baseline, men took 4806 steps per day and spent 72.5% of their day in SB, 23.1% in light PA, and 4.1% in moderate-to-vigorous PA (MVPA). Mean change per year was -341 steps, +1.1% SB, -0.7% light PA, and -0.4% MVPA each day (all P 30 min increased from 5.1 by 0.1 per year (P = 0.02). CONCLUSIONS: Among older adults, the steep decline in total PA occurred because of reductions in MVPA, while light PA is relatively spared and sedentary time and long sedentary bouts increase

    Great black-headed gulls Larus Ichythaetus and renecked Phalaropes Phalaropus Lobatus inland Ethiopia

    Get PDF
    Volume: 3

    Information capacity in the weak-signal approximation

    Full text link
    We derive an approximate expression for mutual information in a broad class of discrete-time stationary channels with continuous input, under the constraint of vanishing input amplitude or power. The approximation describes the input by its covariance matrix, while the channel properties are described by the Fisher information matrix. This separation of input and channel properties allows us to analyze the optimality conditions in a convenient way. We show that input correlations in memoryless channels do not affect channel capacity since their effect decreases fast with vanishing input amplitude or power. On the other hand, for channels with memory, properly matching the input covariances to the dependence structure of the noise may lead to almost noiseless information transfer, even for intermediate values of the noise correlations. Since many model systems described in mathematical neuroscience and biophysics operate in the high noise regime and weak-signal conditions, we believe, that the described results are of potential interest also to researchers in these areas.Comment: 11 pages, 4 figures; accepted for publication in Physical Review

    Fitting Voronoi Diagrams to Planar Tesselations

    Get PDF
    Given a tesselation of the plane, defined by a planar straight-line graph GG, we want to find a minimal set SS of points in the plane, such that the Voronoi diagram associated with SS "fits" \ GG. This is the Generalized Inverse Voronoi Problem (GIVP), defined in \cite{Trin07} and rediscovered recently in \cite{Baner12}. Here we give an algorithm that solves this problem with a number of points that is linear in the size of GG, assuming that the smallest angle in GG is constant.Comment: 14 pages, 8 figures, 1 table. Presented at IWOCA 2013 (Int. Workshop on Combinatorial Algorithms), Rouen, France, July 201

    Minimal size of a barchan dune

    Full text link
    Barchans are dunes of high mobility which have a crescent shape and propagate under conditions of unidirectional wind. However, sand dunes only appear above a critical size, which scales with the saturation distance of the sand flux [P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002); B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B {\bf{28,}} 321 (2002); G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E {\bf{64,}} 31305 (2001)]. It has been suggested by P. Hersen, S. Douady, and B. Andreotti, Phys. Rev. Lett. {\bf{89,}} 264301 (2002) that this flux fetch distance is itself constant. Indeed, this could not explain the proto size of barchan dunes, which often occur in coastal areas of high litoral drift, and the scale of dunes on Mars. In the present work, we show from three dimensional calculations of sand transport that the size and the shape of the minimal barchan dune depend on the wind friction speed and the sand flux on the area between dunes in a field. Our results explain the common appearance of barchans a few tens of centimeter high which are observed along coasts. Furthermore, we find that the rate at which grains enter saltation on Mars is one order of magnitude higher than on Earth, and is relevant to correctly obtain the minimal dune size on Mars.Comment: 11 pages, 10 figure

    Spectroscopy of neutron-unbound 27,28^{27,28}F

    Full text link
    The ground state of 28^{28}F has been observed as an unbound resonance 2202\underline{2}0 keV above the ground state of 27^{27}F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the 28^{28}F ground state is primarily dominated by sdsd-shell configurations. Here we present a detailed report on the experiment in which the ground state resonance of 28^{28}F was first observed. Additionally, we report the first observation of a neutron-unbound excited state in 27^{27}F at an excitation energy of 2500(220)25\underline{0}0 (2\underline{2}0) keV.Comment: 10 pages, 11 figures, Accepted for publication in Phys. Rev.

    Many Roads to Synchrony: Natural Time Scales and Their Algorithms

    Full text link
    We consider two important time scales---the Markov and cryptic orders---that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the epsilon-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the epsilon-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.Comment: 17 pages, 16 figures: http://cse.ucdavis.edu/~cmg/compmech/pubs/kro.htm. Santa Fe Institute Working Paper 10-11-02
    corecore