381 research outputs found
Ergodicity and Slowing Down in Glass-Forming Systems with Soft Potentials: No Finite-Temperature Singularities
The aim of this paper is to discuss some basic notions regarding generic
glass forming systems composed of particles interacting via soft potentials.
Excluding explicitly hard-core interaction we discuss the so called `glass
transition' in which super-cooled amorphous state is formed, accompanied with a
spectacular slowing down of relaxation to equilibrium, when the temperature is
changed over a relatively small interval. Using the classical example of a
50-50 binary liquid of N particles with different interaction length-scales we
show that (i) the system remains ergodic at all temperatures. (ii) the number
of topologically distinct configurations can be computed, is temperature
independent, and is exponential in N. (iii) Any two configurations in phase
space can be connected using elementary moves whose number is polynomially
bounded in N, showing that the graph of configurations has the `small world'
property. (iv) The entropy of the system can be estimated at any temperature
(or energy), and there is no Kauzmann crisis at any positive temperature. (v)
The mechanism for the super-Arrhenius temperature dependence of the relaxation
time is explained, connecting it to an entropic squeeze at the glass
transition. (vi) There is no Vogel-Fulcher crisis at any finite temperature T>0Comment: 10 pages, 9 figures, submitted to PR
Average shape of fluctuations for subdiffusive walks
We study the average shape of fluctuations for subdiffusive processes, i.e.,
processes with uncorrelated increments but where the waiting time distribution
has a broad power-law tail. This shape is obtained analytically by means of a
fractional diffusion approach. We find that, in contrast with processes where
the waiting time between increments has finite variance, the fluctuation shape
is no longer a semicircle: it tends to adopt a table-like form as the
subdiffusive character of the process increases. The theoretical predictions
are compared with numerical simulation results.Comment: 4 pages, 6 figures. Accepted for publication Phys. Rev. E (Replaced
for the latest version, in press.) Section II rewritte
Slow movement of a random walk on the range of a random walk in the presence of an external field
In this article, a localisation result is proved for the biased random walk
on the range of a simple random walk in high dimensions (d \geq 5). This
demonstrates that, unlike in the supercritical percolation setting, a slowdown
effect occurs as soon a non-trivial bias is introduced. The proof applies a
decomposition of the underlying simple random walk path at its cut-times to
relate the associated biased random walk to a one-dimensional random walk in a
random environment in Sinai's regime
Aging in the random energy model
In this letter we announce rigorous results on the phenomenon of aging in the
Glauber dynamics of the random energy model and their relation to Bouchaud's
'REM-like' trap model. We show that, below the critical temperature, if we
consider a time-scale that diverges with the system size in such a way that
equilibrium is almost, but not quite reached on that scale, a suitably defined
autocorrelation function has the same asymptotic behaviour than its analog in
the trap model.Comment: 4pp, P
From interacting particle systems to random matrices
In this contribution we consider stochastic growth models in the
Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large
time distribution and processes and their dependence on the class on initial
condition. This means that the scaling exponents do not uniquely determine the
large time surface statistics, but one has to further divide into subclasses.
Some of the fluctuation laws were first discovered in random matrix models.
Moreover, the limit process for curved limit shape turned out to show up in a
dynamical version of hermitian random matrices, but this analogy does not
extend to the case of symmetric matrices. Therefore the connections between
growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor
corrections in scaling of section 2.
On small-noise equations with degenerate limiting system arising from volatility models
The one-dimensional SDE with non Lipschitz diffusion coefficient is widely
studied in mathematical finance. Several works have proposed asymptotic
analysis of densities and implied volatilities in models involving instances of
this equation, based on a careful implementation of saddle-point methods and
(essentially) the explicit knowledge of Fourier transforms. Recent research on
tail asymptotics for heat kernels [J-D. Deuschel, P.~Friz, A.~Jacquier, and
S.~Violante. Marginal density expansions for diffusions and stochastic
volatility, part II: Applications. 2013, arxiv:1305.6765] suggests to work with
the rescaled variable : while
allowing to turn a space asymptotic problem into a small- problem
with fixed terminal point, the process satisfies a SDE in
Wentzell--Freidlin form (i.e. with driving noise ). We prove a
pathwise large deviation principle for the process as
. As it will become clear, the limiting ODE governing the
large deviations admits infinitely many solutions, a non-standard situation in
the Wentzell--Freidlin theory. As for applications, the -scaling
allows to derive exact log-asymptotics for path functionals of the process:
while on the one hand the resulting formulae are confirmed by the CIR-CEV
benchmarks, on the other hand the large deviation approach (i) applies to
equations with a more general drift term and (ii) potentially opens the way to
heat kernel analysis for higher-dimensional diffusions involving such an SDE as
a component.Comment: 21 pages, 1 figur
On universality of local edge regime for the deformed Gaussian Unitary Ensemble
We consider the deformed Gaussian ensemble in which
is a hermitian matrix (possibly random) and is the Gaussian
unitary random matrix (GUE) independent of . Assuming that the
Normalized Counting Measure of converges weakly (in probability if
random) to a non-random measure with a bounded support and assuming
some conditions on the convergence rate, we prove universality of the local
eigenvalue statistics near the edge of the limiting spectrum of .Comment: 25 pages, 2 figure
Fluctuations for the Ginzburg-Landau Interface Model on a Bounded Domain
We study the massless field on , where is a bounded domain with smooth boundary, with Hamiltonian
\CH(h) = \sum_{x \sim y} \CV(h(x) - h(y)). The interaction \CV is assumed
to be symmetric and uniformly convex. This is a general model for a
-dimensional effective interface where represents the height. We
take our boundary conditions to be a continuous perturbation of a macroscopic
tilt: for , , and
continuous. We prove that the fluctuations of linear
functionals of about the tilt converge in the limit to a Gaussian free
field on , the standard Gaussian with respect to the weighted Dirichlet
inner product for some explicit . In a subsequent article,
we will employ the tools developed here to resolve a conjecture of Sheffield
that the zero contour lines of are asymptotically described by , a
conformally invariant random curve.Comment: 58 page
A critical inventory and associated chronology of the Middle Stone Age and Later Stone Age in Northwest Africa
The study of human evolution and cultural patterns relies on empirical evidence provided by the archaeological record. Accessing dependable archaeological data from scholarly publications can often be challenging due to the variability in site documentation and the diversity of academic practices in publication processes. This study presents a comprehensive synthesis of the published literature documenting dated and undated archaeological materials from the Middle Stone Age and Later Stone Age in Northwest Africa, notably Morocco, Algeria, Tunisia and Libya. No previously published open-access database exists for these chronocultural periods in the region. Our dataset encompasses 993 sites and 1152 dates spanning approximately 370,000 to 8,000 years ago. Through a critical evaluation of the dates, we reveal qualitative and quantitative disparities and highlight the potential of the current archaeological record. While only ~10% of sites are dated and ~4.5% have reliable dates associated with a human occupation, this database holds significant potential for demographic and taxonomic meta-analyses as well as for methodological studies associated with chronological data in archaeology.(1) Overview Context Spatial Coverage Temporal Coverage (2) Methods Archaeological Site Geographical Coordinates Site Type And Fieldwork Methodology Cultural Label Chronology And Data Reliability Quality Control Constraints (3) Dataset Description (4) Reuse Potentia
FashionBrain Project: A Vision for Understanding Europe's Fashion Data Universe
A core business in the fashion industry is the understanding and
prediction of customer needs and trends. Search engines and social
networks are at the same time a fundamental bridge and a costly
middleman between the customer’s purchase intention and the
retailer. To better exploit Europe’s distinctive characteristics e.g.,
multiple languages, fashion and cultural differences, it is pivotal to
reduce retailers’ dependence to search engines. This goal can be
achieved by harnessing various data channels (manufacturers and
distribution networks, online shops, large retailers, social media,
market observers, call centers, press/magazines etc.) that retailers
can leverage in order to gain more insight about potential buyers,
and on the industry trends as a whole. This can enable the creation
of novel on-line shopping experiences, the detection of influencers,
and the prediction of upcoming fashion trends.
In this paper, we provide an overview of the main research
challenges and an analysis of the most promising technological
solutions that we are investigating in the FashionBrain project
- …
