261 research outputs found
Can groundwater secure drinking-water supply and supplementary irrigation in new settlements of North-West Cambodia ?
Since the end of the Cambodian Civil War in 1998, the population of the Oddar Meanchey province has drastically increased despite the lack of adequate infrastructure, including basic amenities such as drinking-water supply. To improve the access to drinking water, governmental and aid agencies have focussed on drilling shallow boreholes. The use of groundwater for irrigation is also a growing concern to cope with the occasional late arrival of the rainy season or to produce food during the dry season. Since the groundwater resource in the province has not been documented, a 4-year study was undertaken (2011-2014), aiming to estimate the capability of groundwater to supply domestic needs and supplementary irrigation for rice production. Aquifer properties were estimated by combined use of hydrogeological techniques with the geophysical magnetic resonance sounding method. Groundwater storage and recharge were estimated based on new developments in the application of the geophysical method for quantifying specific yield. The median groundwater storage of the targeted sandstone aquifer is 173 mm, the recharge is diffuse and annually ranges from 10 to 70 mm, and the transmissivity is low to medium. Simulations of pumping indicate that the aquifer can easily supply 100 L of drinking water per capita daily, even considering the estimated population in 2030. However, the shallow aquifer can generally not deliver enough water to irrigate paddy fields of several hectares during a 2-month delay in the onset of the monsoon
Surgeon experience with dynamic intraligamentary stabilization does not influence risk of failure
Purpose: Studies on dynamic intraligamentary stabilization (DIS) of acute anterior cruciate ligament (ACL) ruptures reported failure rates similar to those of conventional ACL reconstruction. This study aimed to determine whether surgeon experience with DIS is associated with revision rates or patient-reported outcomes. The hypothesis was that more experienced surgeons achieved better outcomes following DIS due to substantial learning curve.
Methods: The authors prospectively enrolled 110 consecutive patients that underwent DIS and evaluated them at a minimum of 2 years. The effects of independent variables (surgeon experience, gender, age, adjuvant procedures, tear location, preinjury Tegner score, time from injury to surgery, and follow-up) on four principal outcomes (revision ACL surgery, any re-operation, IKDC and Lysholm score) were analyzed using univariable and multivariable regressions.
Results: From the 110 patients enrolled, 14 patients (13%) were lost to follow-up. Of the remaining 96 patients, 11 underwent revision ACL surgery, leaving 85 patients for clinical assessment at a mean of 2.2 +/- 0.4 years (range 2.0-3.8). Arthroscopic reoperations were performed in 26 (27%) patients, including 11 (11%) revision ACL surgeries. Multivariable regressions revealed: (1) no associations between the reoperation rate and the independent variables, (2) better IKDC scores for 'designer surgeons' (b = 10.7; CI 4.9-16.5; p < 0.001), higher preinjury Tegner scores (b = 2.5, CI 0.8-4.2; p = 0.005), and younger patients (b = 0.3, CI 0.0-0.6; p = 0.039), and (3) better Lysholm scores for 'designer surgeons' (b = 7.8, CI 2.8-12.8; p = 0.005) and preinjury Tegner score (b = 1.9, CI 0.5-3.4; p = 0.010).
Conclusion: Surgeon experience with DIS was not associated with rates of revision ACL surgery or general re-operations. Future, larger-scaled studies are needed to confirm these findings. Patients operated by 'designer surgeons' had slightly better IKDC and Lysholm scores, which could be due to better patient selection and/or positively biased attitudes of both surgeons and patients
Kinetic pathways of the Nematic-Isotropic phase transition as studied by confocal microscopy on rod-like viruses
We investigate the kinetics of phase separation for a mixture of rodlike
viruses (fd) and polymer (dextran), which effectively constitutes a system of
attractive rods. This dispersion is quenched from a flow-induced fully nematic
state into the region where the nematic and the isotropic phase coexist. We
show experimental evidence that the kinetic pathway depends on the overall
concentration. When the quench is made at high concentrations, the system is
meta-stable and we observe typical nucleation-and-growth. For quenches at low
concentration the system is unstable and the system undergoes a spinodal
decomposition. At intermediate concentrations we see the transition between
both demixing processes, where we locate the spinodal point.Comment: 11 pages, 6 figures, accepted in J. Phys.: Condens. Matter as
symposium paper for the 6th Liquid Matter Conference in Utrech
A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes : role of extracellular polymeric substances (EPS)
Chemical cleaning is vital for the optimal operation of membrane systems. Membrane chemical cleaning protocols are often developed in the laboratory flow cells (e.g., Membrane Fouling Simulator (MFS)) using synthetic feed water (nutrient excess) and short experimental time of typically days. However, full-scale Reverse Osmosis (RO) membranes are usually fed with nutrient limited feed water (due to extensive pre-treatment) and operated for a long-time of typically years. These operational differences lead to significant differences in the efficiency of chemical Cleaning-In-Place (CIP) carried out on laboratory-scale and on full-scale RO systems. Therefore, we investigated the suitability of lab-scale CIP results for full-scale applications. A lab-scale flow cell (i.e., MFSs) and two full-scale RO modules were analysed to compare CIP efficiency in terms of water flux recovery and biofouling properties (biomass content, Extracellular Polymeric Substances (EPS) composition and EPS adherence) under typical lab-scale and full-scale conditions. We observed a significant difference between the CIP efficiency in lab-scale (~50%) and full-scale (9–20%) RO membranes. Typical biomass analysis such as Total Organic Carbon (TOC) and Adenosine triphosphate (ATP) measurements did not indicate any correlation to the observed trend in the CIP efficiency in the lab-scale and full-scale RO membranes. However, the biofilms formed in the lab-scale contains different EPS than the biofilms in the full-scale RO modules. The biofilms in the lab-scale MFS have polysaccharide-rich EPS (Protein/Polysaccharide ratio = 0.5) as opposed to biofilm developed in full-scale modules which contain protein-rich EPS (Protein/Polysaccharide ratio = 2.2). Moreover, EPS analysis indicates the EPS extracted from full-scale biofilms have a higher affinity and rigidity to the membrane surface compared to EPS from lab-scale biofilm. Thus, we propose that CIP protocols should be optimized in long-term experiments using the realistic feed water
Structural mapping of oligomeric intermediates in an amyloid assembly pathway
Transient oligomers are commonly formed in the early stages of amyloid assembly. Determining the structure(s) of these species and defining their role(s) in assembly is key to devising new routes to control disease. Here, using a combination of chemical kinetics, NMR spectroscopy and other biophysical methods, we identify and structurally characterize the oligomers required for amyloid assembly of the protein ΔN6, a truncation variant of human β2-microglobulin (β2m) found in amyloid deposits in the joints of patients with dialysis-related amyloidosis. The results reveal an assembly pathway which is initiated by the formation of head-to-head non-toxic dimers and hexamers en route to amyloid fibrils. Comparison with inhibitory dimers shows that precise subunit organization determines amyloid assembly, while dynamics in the C-terminal strand hint to the initiation of cross-β structure formation. The results provide a detailed structural view of early amyloid assembly involving structured species that are not cytotoxic
- …