1,360 research outputs found
Studying and Modeling the Connection between People's Preferences and Content Sharing
People regularly share items using online social media. However, people's
decisions around sharing---who shares what to whom and why---are not well
understood. We present a user study involving 87 pairs of Facebook users to
understand how people make their sharing decisions. We find that even when
sharing to a specific individual, people's own preference for an item
(individuation) dominates over the recipient's preferences (altruism). People's
open-ended responses about how they share, however, indicate that they do try
to personalize shares based on the recipient. To explain these contrasting
results, we propose a novel process model of sharing that takes into account
people's preferences and the salience of an item. We also present encouraging
results for a sharing prediction model that incorporates both the senders' and
the recipients' preferences. These results suggest improvements to both
algorithms that support sharing in social media and to information diffusion
models.Comment: CSCW 201
Social determinants of content selection in the age of (mis)information
Despite the enthusiastic rhetoric about the so called \emph{collective
intelligence}, conspiracy theories -- e.g. global warming induced by chemtrails
or the link between vaccines and autism -- find on the Web a natural medium for
their dissemination. Users preferentially consume information according to
their system of beliefs and the strife within users of opposite narratives may
result in heated debates. In this work we provide a genuine example of
information consumption from a sample of 1.2 million of Facebook Italian users.
We show by means of a thorough quantitative analysis that information
supporting different worldviews -- i.e. scientific and conspiracist news -- are
consumed in a comparable way by their respective users. Moreover, we measure
the effect of the exposure to 4709 evidently false information (satirical
version of conspiracy theses) and to 4502 debunking memes (information aiming
at contrasting unsubstantiated rumors) of the most polarized users of
conspiracy claims. We find that either contrasting or teasing consumers of
conspiracy narratives increases their probability to interact again with
unsubstantiated rumors.Comment: misinformation, collective narratives, crowd dynamics, information
spreadin
Resolution limit in community detection
Detecting community structure is fundamental to clarify the link between
structure and function in complex networks and is used for practical
applications in many disciplines. A successful method relies on the
optimization of a quantity called modularity [Newman and Girvan, Phys. Rev. E
69, 026113 (2004)], which is a quality index of a partition of a network into
communities. We find that modularity optimization may fail to identify modules
smaller than a scale which depends on the total number L of links of the
network and on the degree of interconnectedness of the modules, even in cases
where modules are unambiguously defined. The probability that a module conceals
well-defined substructures is the highest if the number of links internal to
the module is of the order of \sqrt{2L} or smaller. We discuss the practical
consequences of this result by analyzing partitions obtained through modularity
optimization in artificial and real networks.Comment: 8 pages, 3 figures. Clarification of definition of community in
Section II + minor revision
Spreading in Social Systems: Reflections
In this final chapter, we consider the state-of-the-art for spreading in
social systems and discuss the future of the field. As part of this reflection,
we identify a set of key challenges ahead. The challenges include the following
questions: how can we improve the quality, quantity, extent, and accessibility
of datasets? How can we extract more information from limited datasets? How can
we take individual cognition and decision making processes into account? How
can we incorporate other complexity of the real contagion processes? Finally,
how can we translate research into positive real-world impact? In the
following, we provide more context for each of these open questions.Comment: 7 pages, chapter to appear in "Spreading Dynamics in Social Systems";
Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur
Fashion, Cooperation, and Social Interactions
Fashion plays such a crucial rule in the evolution of culture and society
that it is regarded as a second nature to the human being. Also, its impact on
economy is quite nontrivial. On what is fashionable, interestingly, there are
two viewpoints that are both extremely widespread but almost opposite:
conformists think that what is popular is fashionable, while rebels believe
that being different is the essence. Fashion color is fashionable in the first
sense, and Lady Gaga in the second. We investigate a model where the population
consists of the afore-mentioned two groups of people that are located on social
networks (a spatial cellular automata network and small-world networks). This
model captures two fundamental kinds of social interactions (coordination and
anti-coordination) simultaneously, and also has its own interest to game
theory: it is a hybrid model of pure competition and pure cooperation. This is
true because when a conformist meets a rebel, they play the zero sum matching
pennies game, which is pure competition. When two conformists (rebels) meet,
they play the (anti-) coordination game, which is pure cooperation. Simulation
shows that simple social interactions greatly promote cooperation: in most
cases people can reach an extraordinarily high level of cooperation, through a
selfish, myopic, naive, and local interacting dynamic (the best response
dynamic). We find that degree of synchronization also plays a critical role,
but mostly on the negative side. Four indices, namely cooperation degree,
average satisfaction degree, equilibrium ratio and complete ratio, are defined
and applied to measure people's cooperation levels from various angles. Phase
transition, as well as emergence of many interesting geographic patterns in the
cellular automata network, is also observed.Comment: 21 pages, 12 figure
Suicide ideation of individuals in online social networks
Suicide explains the largest number of death tolls among Japanese adolescents
in their twenties and thirties. Suicide is also a major cause of death for
adolescents in many other countries. Although social isolation has been
implicated to influence the tendency to suicidal behavior, the impact of social
isolation on suicide in the context of explicit social networks of individuals
is scarcely explored. To address this question, we examined a large data set
obtained from a social networking service dominant in Japan. The social network
is composed of a set of friendship ties between pairs of users created by
mutual endorsement. We carried out the logistic regression to identify users'
characteristics, both related and unrelated to social networks, which
contribute to suicide ideation. We defined suicide ideation of a user as the
membership to at least one active user-defined community related to suicide. We
found that the number of communities to which a user belongs to, the
intransitivity (i.e., paucity of triangles including the user), and the
fraction of suicidal neighbors in the social network, contributed the most to
suicide ideation in this order. Other characteristics including the age and
gender contributed little to suicide ideation. We also found qualitatively the
same results for depressive symptoms.Comment: 4 figures, 9 table
Dynamics in online social networks
An increasing number of today's social interactions occurs using online
social media as communication channels. Some online social networks have become
extremely popular in the last decade. They differ among themselves in the
character of the service they provide to online users. For instance, Facebook
can be seen mainly as a platform for keeping in touch with close friends and
relatives, Twitter is used to propagate and receive news, LinkedIn facilitates
the maintenance of professional contacts, Flickr gathers amateurs and
professionals of photography, etc. Albeit different, all these online platforms
share an ingredient that pervades all their applications. There exists an
underlying social network that allows their users to keep in touch with each
other and helps to engage them in common activities or interactions leading to
a better fulfillment of the service's purposes. This is the reason why these
platforms share a good number of functionalities, e.g., personal communication
channels, broadcasted status updates, easy one-step information sharing, news
feeds exposing broadcasted content, etc. As a result, online social networks
are an interesting field to study an online social behavior that seems to be
generic among the different online services. Since at the bottom of these
services lays a network of declared relations and the basic interactions in
these platforms tend to be pairwise, a natural methodology for studying these
systems is provided by network science. In this chapter we describe some of the
results of research studies on the structure, dynamics and social activity in
online social networks. We present them in the interdisciplinary context of
network science, sociological studies and computer science.Comment: 17 pages, 4 figures, book chapte
Individualization as driving force of clustering phenomena in humans
One of the most intriguing dynamics in biological systems is the emergence of
clustering, the self-organization into separated agglomerations of individuals.
Several theories have been developed to explain clustering in, for instance,
multi-cellular organisms, ant colonies, bee hives, flocks of birds, schools of
fish, and animal herds. A persistent puzzle, however, is clustering of opinions
in human populations. The puzzle is particularly pressing if opinions vary
continuously, such as the degree to which citizens are in favor of or against a
vaccination program. Existing opinion formation models suggest that
"monoculture" is unavoidable in the long run, unless subsets of the population
are perfectly separated from each other. Yet, social diversity is a robust
empirical phenomenon, although perfect separation is hardly possible in an
increasingly connected world. Considering randomness did not overcome the
theoretical shortcomings so far. Small perturbations of individual opinions
trigger social influence cascades that inevitably lead to monoculture, while
larger noise disrupts opinion clusters and results in rampant individualism
without any social structure. Our solution of the puzzle builds on recent
empirical research, combining the integrative tendencies of social influence
with the disintegrative effects of individualization. A key element of the new
computational model is an adaptive kind of noise. We conduct simulation
experiments to demonstrate that with this kind of noise, a third phase besides
individualism and monoculture becomes possible, characterized by the formation
of metastable clusters with diversity between and consensus within clusters.
When clusters are small, individualization tendencies are too weak to prohibit
a fusion of clusters. When clusters grow too large, however, individualization
increases in strength, which promotes their splitting.Comment: 12 pages, 4 figure
Social Cohesion, Structural Holes, and a Tale of Two Measures
EMBARGOED - author can archive pre-print or post-print on any open access repository after 12 months from publication. Publication date is May 2013 so embargoed until May 2014.This is an author’s accepted manuscript (deposited at arXiv arXiv:1211.0719v2 [physics.soc-ph] ), which was subsequently published in Journal of Statistical Physics May 2013, Volume 151, Issue 3-4, pp 745-764. The final publication is available at link.springer.com http://link.springer.com/article/10.1007/s10955-013-0722-
- …
