79 research outputs found

    PPM Reduction on Embedded Memories in System on Chip

    Full text link
    This paper summarizes advanced test patterns designed to target dynamic and time-related faults caused by new defect mechanisms in deep-submicron memory technologies. Such tests are industrially evaluated together with the traditional tests at "Design of Systems on Silicon (DS2)" in Spain in order to (a) validate the used fault models and (b) investigate the added value of the new tests and their impact on the PPM level. The preliminary silicon results are presented and analyzed. They validate some of the new dynamic fault models and show the importance of considering dynamic faults for high outgoing product quality.Electrical Engineering, Mathematics and Computer Scienc

    Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints

    Medicinal and ethnoveterinary remedies of hunters in Trinidad

    Get PDF
    BACKGROUND: Ethnomedicines are used by hunters for themselves and their hunting dogs in Trinidad. Plants are used for snakebites, scorpion stings, for injuries and mange of dogs and to facilitate hunting success. RESULTS: Plants used include Piper hispidum, Pithecelobium unguis-cati, Bauhinia excisa, Bauhinia cumanensis, Cecropia peltata, Aframomum melegueta, Aristolochia rugosa, Aristolochia trilobata, Jatropha curcas, Jatropha gossypifolia, Nicotiana tabacum, Vernonia scorpioides, Petiveria alliacea, Renealmia alpinia, Justicia secunda, Phyllanthus urinaria,Phyllanthus niruri,Momordica charantia, Xiphidium caeruleum, Ottonia ovata, Lepianthes peltata, Capsicum frutescens, Costus scaber, Dendropanax arboreus, Siparuma guianensis, Syngonium podophyllum, Monstera dubia, Solanum species, Eclipta prostrata, Spiranthes acaulis, Croton gossypifolius, Barleria lupulina, Cola nitida, Acrocomia ierensis (tentative ID). CONCLUSION: Plant use is based on odour, and plant morphological characteristics and is embedded in a complex cultural context based on indigenous Amerindian beliefs. It is suggested that the medicinal plants exerted a physiological action on the hunter or his dog. Some of the plants mentioned contain chemicals that may explain the ethnomedicinal and ethnoveterinary use. For instance some of the plants influence the immune system or are effective against internal and external parasites. Plant baths may contribute to the health and well being of the hunting dogs

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Exploration of Alternative GPU Implementations of the Pair-HMMs Forward Algorithm

    No full text
    In order to handle the massive raw data generated by next generation sequencing (NGS) platforms, GPUs are widely used by many genetic analysis tools to speed up the used algorithms. In this paper, we use GPUs to accelerate the pair-HMMs forward algorithm, which is used to calculate the overall alignment probability in many genomics analysis tools. We firstly evaluate two different implementation methods to accelerate the pair-HMMs forward algorithm according to their effectiveness on GPU platforms. Based on these two methods, we present several implementations of the pair-HMMs forward algorithm.We execute these implementations on the NVIDIA Tesla K40 card using different datasets to compare the performance. Experimental results show that the intra-task implementation has the highest throughput in most cases, achieving pure computational throughput as high as 23.56 GCUPS for synthetic datasets.On a real dataset, the inter-task implementation achieves 4.82x speedup compared with a vectorized implementation executed on a 20-core POWER8 system.Quantum & Computer EngineeringComputer Engineerin

    Efficient Acceleration of the Pair-HMMs Forward Algorithm for GATK HaplotypeCaller on Graphics Processing Units

    No full text
    GATK HaplotypeCaller (HC) is a popular variant caller, which is widely used to identify variants in complex genomes. However, due to its high variants detection accuracy, it suffers from long execution time. In GATK HC, the pair-HMMs forward algorithm accounts for a large percentage of the total execution time. This article proposes to accelerate the pair-HMMs forward algorithm on graphics processing units (GPUs) to improve the performance of GATK HC. This article presents several GPU-based implementations of the pair-HMMs forward algorithm. It also analyzes the performance bottlenecks of the implementations on an NVIDIA Tesla K40 card with various data sets. Based on these results and the characteristics of GATK HC, we are able to identify the GPU-based implementations with the highest performance for the various analyzed data sets. Experimental results show that the GPU-based implementations of the pair-HMMs forward algorithm achieve a speedup of up to 5.47× over existing GPU-based implementations.Computer EngineeringFTQC/Bertels LabQuantum & Computer Engineerin
    • …
    corecore