20,404 research outputs found

    Acoustic fatigue: Overview of activities at NASA Langley

    Get PDF
    A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway

    Benchmark of a modified Iterated Perturbation Theory approach on the 3d FCC lattice at strong coupling

    Full text link
    The Dynamical Mean-Field theory (DMFT) approach to the Hubbard model requires a method to solve the problem of a quantum impurity in a bath of non-interacting electrons. Iterated Perturbation Theory (IPT) has proven its effectiveness as a solver in many cases of interest. Based on general principles and on comparisons with an essentially exact Continuous-Time Quantum Monte Carlo (CTQMC) solver, here we show that the standard implementation of IPT fails away from half-filling when the interaction strength is much larger than the bandwidth. We propose a slight modification to the IPT algorithm that replaces one of the equations by the requirement that double occupancy calculated with IPT gives the correct value. We call this method IPT-DD. We recover the Fermi liquid ground state away from half-filling. The Fermi liquid parameters, density of states, chemical potential, energy and specific heat on the FCC lattice are calculated with both IPT-DD and CTQMC as benchmark examples. We also calculated the resistivity and the optical conductivity within IPT-DD. Particle-hole asymmetry persists even at coupling twice the bandwidth. Several algorithms that speed up the calculations are described in appendices.Comment: 17 pages, 15 figures, minor changes to improve clarit

    Impending anterior ischemic optic neuropathy with elements of retinal vein occlusion in a patient on interferon for polycythemia vera.

    Get PDF
    We describe the course and likely pathophysiology of impending anterior ischemic optic neuropathy (AION) and retinal vein occlusion in a 56-year-old man with polycythemia vera managed with interferon alpha for 2 years. Our patient presented with decreased vision, scintillating scotomata, and floaters. Fundus examination findings and results of a fluorescein angiogram led to the diagnosis of impending AION and retinal vein occlusion. Considering that both polycythemia vera and interferon have possible influences on vascular occlusion and optic disc edema, we stopped interferon treatment and immediately attempted to treat the polycythemia vera empirically with pentoxifylline and any interferon-associated inflammation with prednisone. Our patient experienced complete resolution of fundus abnormalities and return of normal vision within 3 weeks, which may be attributed to our successful treatment of both etiologies. Thus, further study is warranted to elucidate the treatment of both polycythemia vera and interferon-induced impending AION

    Picard-Fuchs Equations and Special Geometry

    Full text link
    We investigate the system of holomorphic differential identities implied by special K\"ahlerian geometry of four-dimensional N=2 supergravity. For superstring compactifications on \cy threefolds these identities are equivalent to the Picard-Fuchs equations of algebraic geometry that are obeyed by the periods of the holomorphic three-form. For one variable they reduce to linear fourth-order equations which are characterized by classical WW-generators; we find that the instanton corrections to the Yukawa couplings are directly related to the non-vanishing of w4w_4. We also show that the symplectic structure of special geometry can be related to the fact that the Yukawa couplings can be written as triple derivatives of some holomorphic function FF. Moreover, we give the precise relationship of the Yukawa couplings of special geometry with three-point functions in topological field theory.Comment: 43 page

    Laboratory experiments on the generation of internal tidal beams over steep slopes

    Get PDF
    We designed a simple laboratory experiment to study internal tides generation. We consider a steep continental shelf, for which the internal tide is shown to be emitted from the critical point, which is clearly amphidromic. We also discuss the dependence of the width of the emitted beam on the local curvature of topography and on viscosity. Finally we derive the form of the resulting internal tidal beam by drawing an analogy with an oscillating cylinder in a static fluid

    Identifying candidates for targeted gait rehabilitation: better prediction through biomechanics-informed characterization

    Full text link
    BACKGROUND: Walking speed has been used to predict the efficacy of gait training; however, poststroke motor impairments are heterogeneous and different biomechanical strategies may underlie the same walking speed. Identifying which individuals will respond best to a particular gait rehabilitation program using walking speed alone may thus be limited. The objective of this study was to determine if, beyond walking speed, participants' baseline ability to generate propulsive force from their paretic limbs (paretic propulsion) influences the improvements in walking speed resulting from a paretic propulsion-targeting gait intervention. METHODS: Twenty seven participants >6 months poststroke underwent a 12-week locomotor training program designed to target deficits in paretic propulsion through the combination of fast walking with functional electrical stimulation to the paretic ankle musculature (FastFES). The relationship between participants' baseline usual walking speed (UWSbaseline), maximum walking speed (MWSbaseline), and paretic propulsion (propbaseline) versus improvements in usual walking speed (∆UWS) and maximum walking speed (∆MWS) were evaluated in moderated regression models. RESULTS: UWSbaseline and MWSbaseline were, respectively, poor predictors of ΔUWS (R 2  = 0.24) and ΔMWS (R 2  = 0.01). Paretic propulsion × walking speed interactions (UWSbaseline × propbaseline and MWSbaseline × propbaseline) were observed in each regression model (R 2 s = 0.61 and 0.49 for ∆UWS and ∆MWS, respectively), revealing that slower individuals with higher utilization of the paretic limb for forward propulsion responded best to FastFES training and were the most likely to achieve clinically important differences. CONCLUSIONS: Characterizing participants based on both their walking speed and ability to generate paretic propulsion is a markedly better approach to predicting walking recovery following targeted gait rehabilitation than using walking speed alone
    • …
    corecore