154 research outputs found

    Lack of diamagnetism and the Little-Parks effect

    Full text link
    When a superconducting sample is submitted to a sufficiently strong external magnetic field, the superconductivity of the material is lost. In this paper we prove that this effect does not, in general, take place at a unique value of the external magnetic field strength. Indeed, for a sample in the shape of a narrow annulus the set of magnetic field strengths for which the sample is superconducting is not an interval. This is a rigorous justification of the Little-Parks effect. We also show that the same oscillation effect can happen for disc-shaped samples if the external magnetic field is non-uniform. In this case the oscillations can even occur repeatedly along arbitrarily large values of the Ginzburg--Landau parameter Îş\kappa. The analysis is based on an understanding of the underlying spectral theory for a magnetic Schr\"{o}dinger operator. It is shown that the ground state energy of such an operator is not in general a monotone function of the intensity of the field, even in the limit of strong fields

    Feeding the British: Convergence and Market Efficiency in 19th Century Grain Trade

    Get PDF
    This paper traces the evolution of the international market for wheat from an emerging market structure after the repeal of the Corn Laws to a mature market characterized by efficient arbitrage after the introduction of the transatlantic telegraph and the growth of trade. Efficiency is documented using traditional price gap accounting as well as error correction modelling. Markets which traded directly with each other as well as markets which did not trade with each other were integrated. The traditional bi-lateral focus in market integration studies has been extended to a multi-variate approach which generates new insights as to the pattern of diffusion of price shocks in the international economy. Shocks in the major importing nation, Britain, dominated in the emerging market phase while shocks in the major exporting economy, United States, dominated international prices movements at the end of the 19th century.

    Genetic diversity in the parthenogenetic reproducing tardigrade <i>Echiniscus testudo</i> (Heterotardigrada: Echiniscoidea)

    Get PDF
    Little is known about the genetic structure of microscopic animals from mosses and lichens. A few studies have investigated the geographic variation in tardigrades from mosses, but so far no study has investigated the intra-population or local clonal lineage variation. Echiniscus testudo (Echiniscoidea: Echiniscidae) belongs to a large cosmopolitan genus of terrestrial tardigrades comprising more than 150 species. It is a common tardigrade in mosses in the temperate part of the Northern hemisphere, and is highly tolerant of desiccation and freezing. In a previous study, we reported a maximum of 1.28% sequence variation (uncorrected p-distance) in cytochrome c oxidase subunit I (COI) haplotypes between clonal lineages covering a large geographical area. However, in this previous study we used pooled specimens to constitute a sample, and the genetic diversity from single specimens within a locality therefore remains unknown. Accordingly, the present study investigates the COI sequence variation and haplotype diversity between single specimens of E. testudo collected at three Danish localities, separated by 80 m and 186 km. A total of 10 COI haplotypes were found in the present study (Et2, Et3, Et9, Et12-Et18); only three of these were previously reported (Et2, Et3 and Et9). The uncorrected COI sequence diversity ranged between 0-2.07%, with haplotype Et18 having the highest genetic difference. The second most variable haplotypes (Et14, Et15, and Et17) all showed a maximum diversity of 1.19% compared to the other haplotypes. No general pattern of haplotype distribution was evident. Our data suggest that E. testudo has dispersed across the Baltic sea as haplotypes Et3, Et13 and Et14 are present at all three localities. The most likely dispersal mode is passive wind dispersal in the cryptobiotic tun stage. The current study emphasises that numerous sequences from single specimens are needed to describe the genetic diversity within single moss cushions

    Multi-element bioimaging of Arabidopsis thaliana roots

    Get PDF
    Better understanding of root function is central for development of plants with more efficient nutrient uptake and translocation. We here present a method for multi-element bioimaging at the cellular level in roots of the genetic model system Arabidopsis thaliana. Using conventional protocols for microscopy we observed that diffusible ions such as potassium (K+) and sodium (Na+) were lost during sample dehydration. Thus, we developed a protocol which preserves ions in their native, cellular environment. Briefly, fresh roots are encapsulated in paraffin, then cryo-sectioned and freeze dried. Samples are finally analyzed by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), utilizing a specially designed internal standard procedure. The method can be further developed to maintain the native composition of proteins, enzymes, RNA and DNA, making it attractive in combination with other omics techniques. To demonstrate the potential of the method we analyzed a mutant of A. thaliana unable to synthesize the metal chelator nicotianamine (NA). The mutant accumulated substantially more zinc (Zn) and manganese (Mn) than the wild type in the tissues surrounding the vascular cylinder. For iron (Fe) the images looked completely different, with Fe bound mainly in the epidermis of the WT plants, but confined to the cortical cell walls of the mutant. The method offers the power of ICP-MS to be fully employed, thereby providing a basis for detailed studies of ion transport in roots. Being applicable to A. thaliana, the molecular and genetic approaches available in this system can now be fully exploited in order to gain a better mechanistic understanding of these processes

    Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Get PDF
    Quantitative multi-elemental analysis by inductively coupled plasma (ICP) spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight). A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM) with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds), the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm) closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at improvement of the micronutrient density in edible plant parts. Compared to existing vial-in-vial systems, the new method developed here represents a significant methodological advancement in terms of higher capacity, reduced labour consumption, lower material costs, less contamination and, as a consequence, improved analytical accuracy following micro-scaled digestion of plant samples

    Microbial diversity in fecal samples depends on DNA extraction method: easyMag DNA extraction compared to QIAamp DNA stool mini kit extraction

    Get PDF
    BACKGROUND: There are challenges, when extracting bacterial DNA from specimens for molecular diagnostics, since fecal samples also contain DNA from human cells and many different substances derived from food, cell residues and medication that can inhibit downstream PCR. The purpose of the study was to evaluate two different DNA extraction methods in order to choose the most efficient method for studying intestinal bacterial diversity using Denaturing Gradient Gel Electrophoresis (DGGE). FINDINGS: In this study, a semi-automatic DNA extraction system (easyMag®, BioMérieux, Marcy I’Etoile, France) and a manual one (QIAamp DNA Stool Mini Kit, Qiagen, Hilden, Germany) were tested on stool samples collected from 3 patients with Inflammatory Bowel disease (IBD) and 5 healthy individuals. DNA extracts obtained by the QIAamp DNA Stool Mini Kit yield a higher amount of DNA compared to DNA extracts obtained by easyMag® from the same fecal samples. Furthermore, DNA extracts obtained using easyMag® seemed to contain inhibitory compounds, since in order to perform a successful PCR-analysis, the sample should be diluted at least 10 times. DGGE performed on PCR from DNA extracted by QIAamp DNA Stool Mini Kit DNA was very successful. CONCLUSION: QIAamp DNA Stool Mini Kit DNA extracts are optimal for DGGE runs and this extraction method yields a higher amount of DNA compared to easyMag®

    Towards diagnostic metagenomics of Campylobacter in fecal samples

    Get PDF
    Abstract Background The development of diagnostic metagenomics is driven by the need for universal, culture-independent methods for detection and characterization of pathogens to substitute the time-consuming, organism-specific, and often culture-based laboratory procedures for epidemiological source-tracing. Some of the challenges in diagnostic metagenomics are, that it requires a great next-generation sequencing depth and unautomated data analysis. Results DNA from human fecal samples spiked with 7.75 × 101−7.75 × 107 colony forming unit (CFU)/ml Campylobacter jejuni and chicken fecal samples spiked with 1 × 102–1 × 106 CFU/g Campylobacter jejuni was sequenced and data analysis was done by the metagenomic tools Kraken and CLARK. More hits were obtained at higher spiking levels, however with no significant linear correlations (human samples p = 0.12, chicken samples p = 0.10). Therefore, no definite detection limit could be determined, but the lowest spiking levels found positive were 7.75 × 104 CFU/ml in human feces and 103 CFU/g in chicken feces. Eight human clinical fecal samples with estimated Campylobacter infection loads from 9.2 × 104–1.0 × 109 CFU/ml were analyzed using the same methods. It was possible to detect Campylobacter in all the clinical samples. Conclusions Sensitivity in diagnostic metagenomics is improving and has reached a clinically relevant level. There are still challenges to overcome before real-time diagnostic metagenomics can replace quantitative polymerase chain reaction (qPCR) or culture-based surveillance and diagnostics, but it is a promising new technology
    • …
    corecore