117 research outputs found
Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotypeâphenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This âgenotype-firstâ approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior
Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
Publisher's version (Ăştgefin grein)Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = â0.71 to â1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = â0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 Ă 10â6, 1.7 Ă 10â 9, 3.5 Ă 10â12 and 1.0 Ă 10â4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes.1000BRAINS: 1000BRAINS is a population-based cohort based on the Heinz-Nixdorf Recall Study and is supported in part by the German National Cohort. We thank the Heinz Nixdorf Foundation (Germany) for their generous support in terms of the Heinz Nixdorf Study. The HNR study is also supported by the German Ministry of Education and Science (FKZ 01EG940), and the German Research Council (DFG, ER 155/6-1). The authors are supported by the Initiative and Networking Fund of the Helmholtz Association (Svenja Caspers) and the European Unionâs Horizon 2020 Research and Innovation Programme under Grant Agreement 7202070 (Human Brain Project SGA1; Katrin Amunts, Sven Cichon). This work was further supported by the German Federal Ministry of Education and Research (BMBF) through the Integrated Network IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders) under the auspices of the e:Med Program (grant 01ZX1314A to M.M.N. and S.C.), and by the Swiss National Science Foundation (SNSF, grant 156791 to S.C.).
16p.11.2 European Consortium: B.D. is supported by the Swiss National Science Foundation (NCCR Synapsy, project grant Nr 32003B_159780) and Foundation Synapsis. LREN is very grateful to the Roger De Spoelberch and Partridge Foundations for their generous financial support. This work was supported by grants from the Simons Foundation (SFARI274424) and the Swiss National Science Foundation (31003A_160203) to A.R. and S.J.
Betula: The relevant Betula data collection and analyses were supported by a grant from the Knut & Alice Wallenberg (KAW) to L. Nyberg.
Brainscale: the Brainscale study was supported by the Netherlands Organization for Scientific Research MagW 480-04-004 (Dorret Boomsma), 51.02.060 (Hilleke Hulshoff Pol), 668.772 (Dorret Boomsma & Hilleke Hulshoff Pol); NWO/SPI 56-464-14192 (Dorret Boomsma), the European Research Council (ERC-230374) (Dorret Boomsma), High Potential Grant Utrecht University (Hilleke Hulshoff Pol), NWO Brain and Cognition 433-09-220 (Hilleke Hulshoff Pol).
Brain Imaging Genetics (BIG): This work makes use of the BIG database, first established in Nijmegen, The Netherlands, in 2007. This resource is now part of Cognomics (www.cognomics.nl), a joint initiative by researchers of the Donders Centre for Cognitive Neuroimaging, the Human Genetics and Cognitive Neuroscience departments of the Radboud university medical centre and the Max Planck Institute for Psycholinguistics in Nijmegen. The Cognomics Initiative has received supported from the participating departments and centres and from external grants, i.e., the Biobanking and Biomolecular Resources Research Infrastructure (the Netherlands) (BBMRI-NL), the Hersenstichting Nederland, and the Netherlands Organisation for Scientific Research (NWO). The research leading to these results also receives funding from the NWO Gravitation grant âLanguage in Interactionâ, the European Communityâs Seventh Framework Programme (FP7/2007â2013) under grant agreements n° 602450 (IMAGEMEND), n°278948 (TACTICS), and n°602805 (Aggressotype) as well as from the European Communityâs Horizon 2020 programme under grant agreement n° 643051 (MiND) and from ERC-2010-AdG 268800-NEUROSCHEMA. In addition, the work was supported by a grant for the ENIGMA Consortium (grant number U54 EB020403) from the BD2K Initiative of a cross-NIH partnership.
COBRE: This work was supported by a NIH COBRE Phase I grant (1P20RR021938, Lauriello, PI and 2P20GM103472, Calhoun, PI) awarded to the Mind Research Network. We wish to express our gratitude to numerous investigators who were either external consultants to the Cores and projects, mentors on the projects, members of the external advisory committee and members of the internal advisory committee.
Decode: The research leading to these results has received financial contribution from the European Unionâs Seventh Framework Programme (EU-FP7/2007â2013), EU-FP7 funded grant no. 602450 (IMAGEMEND) as well as support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no.115300 (EUAIMS).
DemGene: Norwegian Health Association and Research Council of Norway.
Dublin: Work was supported by Science Foundation Ireland (SFI grant 12/IP/1359 to Gary Donohoe and SFI08/IN.1/B1916-Corvin to Aidan C Corvin) and the European Research Council (ERC-StG-2015-677467).
EPIGEN-UK (SMS, CL): The work was partly undertaken at UCLH/UCL, which received a proportion of funding from the UK Department of Healthâs NIHR Biomedical Research Centres funding scheme. We are grateful to the Wolfson Trust and the Epilepsy Society for supporting the Epilepsy Society MRI scanner, and the Epilepsy Society for supporting CL.
Haavik: The work at the K.G.Jebsen center for neuropsychiatric disorders at the University of Bergen, Norway, was supported by Stiftelsen K.G. Jebsen, European Communityâs Seventh Framework Program under grant agreement no 602805 and the H2020 Research and Innovation Program under grant agreement numbers 643051 and 667302.
HUNT: The HUNT Study is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health. HUNT-MRI was funded by the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology, and the Norwegian National Advisory Unit for functional MRI.
IMAGEN: The work received support from the European Union-funded FP6Integrated Project IMAGEN (Reinforcement-related behaviour in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant âSTRATIFYâ (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), the FP7 projects IMAGEMEND (602450; IMAging GEnetics for MENtal Disorders) and MATRICS (603016), the Innovative Medicine Initiative Project EU-AIMS (115300), the Medical Research Council Grant âc-VEDAâ (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the Swedish Research Council FORMAS, the Medical Research Council, the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and Kingâs College London, the BundesministeriumfĂźr Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; eMED SysAlc01ZX1311A; Forschungsnetz AERIAL), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-1, SM 80/7-2, SFB 940/1). Further support was provided by grants from: ANR (project AF12-NEUR0008-01âWM2NA, and ANR-12-SAMA-0004), the Fondation de France, the Fondation pour la Recherche MĂŠdicale, the Mission InterministĂŠrielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-HĂ´pitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), USA (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence.
MCIC: This work was supported primarily by the Department of Energy DE-FG02-99ER62764 through its support of the Mind Research Network and the consortium as well as by the National Association for Research in Schizophrenia and Affective Disorders (NARSAD) Young Investigator Award (to SE) as well as through the Blowitz-Ridgeway and Essel Foundations, and through NWO ZonMw TOP 91211021, the DFG research fellowship (to SE), the Mind Research Network, National Institutes of Health through NCRR 5 month-RR001066 (MGH General Clinical Research Center), NIMH K08 MH068540, the Biomedical Informatics Research Network with NCRR Supplements to P41 RR14075 (MGH), M01 RR 01066 (MGH), NIBIB R01EB006841 (MRN), R01EB005846 (MRN), 2R01 EB000840 (MRN), 1RC1MH089257 (MRN), as well as grant U24 RR021992.
NCNG: this sample collection was supported by grants from the Bergen Research Foundation and the University of Bergen, the Dr Einar Martens Fund, the K.G. Jebsen Foundation, the Research Council of Norway, to SLH, VMS and TE. The Bergen group was supported by grants from the Western Norway Regional Health Authority (Grant 911593 to AL, Grant 911397 and 911687 to AJL).
NESDA: Funding for NESDA was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10-000-1002); the Center for Medical Systems Biology (CSMB, NWO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU Universityâs Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, R01D0042157-01A, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health.Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO.
NTR: The NTR study was supported by the Netherlands Organization for Scientific Research (NWO), MW904-61-193 (Eco de Geus & Dorret Boomsma), MaGW-nr: 400-07- 080 (Dennis van ât Ent), MagW 480-04-004 (Dorret Boomsma), NWO/SPI 56-464-14192 (Dorret Boomsma), the European Research Council, ERC-230374 (Dorret Boomsma), and Amsterdam Neuroscience.
OATS: OATS (Older Australian Twins Study) was facilitated by access to Twins Research Australia, which is funded by a National Health and Medical Research Council (NHMRC) Enabling Grant 310667. OATS is also supported via a NHMRC/Australian Research Council Strategic Award (401162) and a NHMRC Project Grant (1045325). DNA extraction was performed by Genetic Repositories Australia, which was funded by a NHMRC Enabling Grant (401184). OATS genotyping was partly funded by a Commonwealth Scientific and Industrial Research Organisation Flagship Collaboration Fund Grant.
PAFIP: PAFIP data were collected at the Hospital Universitario MarquĂŠs de Valdecilla, University of Cantabria, Santander, Spain, under the following grant support: Carlos III Health Institute PIE14/00031 and SAF2013-46292-R and SAF2015-71526-REDT. We wish to acknowledge IDIVAL Neuroimaging Unit for imaging acquirement and analysis.We want to particularly acknowledge the patients and the BioBankValdecilla (PT13/0010/0024) integrated in the Spanish National Biobanks Network for its collaboration.
QTIM: The QTIM study was supported by grants from the US National Institute of Child Health and Human Development (R01 HD050735) and the Australian National Health and Medical Research Council (NHMRC) (486682, 1009064). Genotyping was supported by NHMRC (389875). Lachlan Strike is supported by an Australian Postgraduate Award (APA). AFM is supported by NHMRC CDF 1083656. We thank the twins and siblings for their participation, the many research assistants, as well as the radiographers, for their contribution to data collection and processing of the samples.
SHIP: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, 01ZZ0403 and 01ZZ0701), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network âGreifswald Approach to Individualized Medicine (GANI_MED)â funded by the Federal Ministry of Education and Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg- West Pomerania. Whole-body MR imaging was supported by a joint grant from Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg West Pomerania. The University of Greifswald is a member of the CachĂŠ Campus program of the InterSystems GmbH.
StrokeMRI: StrokeMRI has been supported by the Research Council of Norway (249795), the South-Eastern Norway Regional Health Authority (2014097, 2015044, 2015073) and the Norwegian ExtraFoundation for Health and Rehabilitation.
TOP: TOP is supported by the Research Council of Norway (223273, 213837, 249711), the South East Norway Health Authority (2017-112), the Kristian Gerhard Jebsen Stiftelsen (SKGJâMEDâ008) and the European Communityâs Seventh Framework Programme (FP7/2007â2013), grant agreement no. 602450 (IMAGEMEND). We acknowledge the technical support and service from the Genomics Core Facility at the Department of Clinical Science, the University of BergenPeer Reviewe
Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = â0.71 to â1.37; P \u3c 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = â0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P=0.0032, 8.9 Ă 10â6, 1.7 Ă 10â9, 3.5 Ă 10â12 and 1.0 Ă 10â4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to noncarriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes
1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple
neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a
high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain
structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088
non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized
methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only)
between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects
of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and
cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct
cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and
somewhat larger in deletion carriersâthe latter potentially mediated by ICV or cortical surface area. These results shed
light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on
specific brain structures and effect on cognitive functio
1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMACNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriersâthe latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function
Recommended from our members
Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly
Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased eggâadult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes.Organismic and Evolutionary Biolog
Dissecting unique and common variance across body and brain health indicators using age prediction
Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses interâindividual heterogeneity in the multisystem ageing process. Using machineâlearning regression models on the UK Biobank data set (N = 32,593, age range 44.6â82.3, mean age 64.1 years), we first estimated tissueâspecific brain age for white and gray matter based on diffusion and T1âweighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict âbody ageâ. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusionâbased model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscleâfat infiltration were related to olderâappearing body age compared to brain age. Conversely, higher handâgrip strength and muscle volume were related to a youngerâappearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals
How real-world data can facilitate the development of precision medicine treatment in psychiatry
Precision medicine has the ambition to improve treatment response and clinical outcomes through patient stratification and holds great potential for the treatment of mental disorders. However, several important factors are needed to transform current practice into a precision psychiatry framework. Most important are 1) the generation of accessible large real-world training and test data including genomic data integrated from multiple sources, 2) the development and validation of advanced analytical tools for stratification and prediction, and 3) the development of clinically useful management platforms for patient monitoring that can be integrated into health care systems in real-life settings. This narrative review summarizes strategies for obtaining the key elements-well-powered samples from large biobanks integrated with electronic health records and health registry data using novel artificial intelligence algorithms-to predict outcomes in severe mental disorders and translate these models into clinical management and treatment approaches. Key elements are massive mental health data and novel artificial intelligence algorithms. For the clinical translation of these strategies, we discuss a precision medicine platform for improved management of mental disorders. We use cases to illustrate how precision medicine interventions could be brought into psychiatry to improve the clinical outcomes of mental disorders
- âŚ