24 research outputs found

    Animal Models in Exosomes Research: What the Future Holds

    Get PDF
    Exosomes have been implicated in a wide range of pathological and nonpathological processes. Research on tumor-derived exosomes uncovered their role on major processes associated with disease progression. Uncontrolled cellular proliferation resulting in tumor growth, metastatic dissemination and modulation of the immune response, are only a few of the central pathological processes in which tumor-derived exosomes have been implicated. These in vivo studies rely on the administration of purified labeled exosomes from cell culture supernatants into circulation of animals or injections of genetically engineered cells that produce labeled exosomes. However, it is not clear that current available techniques actually translate the in vivo implications of exosomes in several biological processes. The variations seen when using different exosomes cell sources, the total amount of exosomes injected in mice and their route of administration as well as the fact that most studies are performed in immunodeficient animals, shows the difficulty to achieve conclusions which are biologically significant. Genetically engineered mouse models (GEMM) could be a promising approach to address the current technical limitations allowing tracing tumor-derived exosomes in a living organism. These models could enhance greatly our knowledge about exosomes in different fields of research, namely cancer

    Pancreatic Cancer Diagnosis and Management: Has the Time Come to Prick the Bubble?

    Get PDF
    Pancreatic cancer (PC) is associated with poor prognosis and very dismal survival rates. The most effective possibility of cure is tumor resection, which is only possible in about 15% of patients diagnosed at early stages of disease progression. Recent whole-genome sequencing studies pointed genetic alterations in 12 core signaling pathways in PC. These observations hint at the possibility that the initial mutation in PC might appear nearly 20 years before any symptoms occur, suggesting that a large window of opportunity may exist for early detection. Biomarkers with the potential to identify pre-neoplastic disease or very early stages of cancer are of great promise to improve patient survival. The concept of liquid biopsy refers to a minimally invasive sampling and analysis of liquid biomarkers that can be isolated from body fluids, primarily blood, urine and saliva. A myriad of circulating molecules may be useful as tumor markers, including cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating tumor cells (CTC), circulating tumor proteins, and extracellular vesicles, more specifically exosomes. In this review, we discuss with more detail the potential role of exosomes in several aspects related to PC, from initiation to tumor progression and its applicability in early detection and treatment. Exosomes are small circulating extracellular vesicles of 50–150 nm in diameter released from the plasma membrane by almost all cells and exhibit some advantages over other biomarkers. Exosomes are central players of intercellular communication and they have been implicated in a series of biological process, including tumorigenesis, migration and metastasis. Several exosomal microRNAs and proteins have been observed to distinguish PC from benign pancreatic diseases and healthy controls. Besides their possible role in diagnosis, understanding exosomes functions in cancer has clarified the importance of microenvironment in PC progression as well as its influence in proliferation, metastasis and resistance to chemotherapy. Increasing knowledge on cancer exosomes provides valuable insights on new therapeutic targets and can potentially open new strategies to treat this disease. Continuous research is needed to ascertain the reliability of using exosomes and their content as potential biomarkers, so that, hopefully, in the near future, they will provide the opportunity for early diagnosis, treatment intervention and increase survival of PC patients

    Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA

    Get PDF
    p53 binds enhancers to regulate key target genes. Here, we globally mapped p53-regulated enhancers by looking at enhancer RNA (eRNA) production. Intriguingly, while many p53-induced enhancers contained p53-binding sites, most did not. As long non-coding RNAs(lncRNAs) are prominent regulators of chromatin dynamics, we hypothesized that p53-induced lncRNAs contribute to the activation of enhancers by p53. Among p53-induced lncRNAs, we identified LED and demonstrate that its suppression attenuates p53 function. Chromatin-binding and eRNA expression analyses show that LED associates with and activates strong enhancers. One prominent target of LED was located at an enhancer region within CDKN1A gene, a potent p53-responsive cell cycle inhibitor. LED knockdown reduces CDKN1A enhancer induction and activity, and cell cycle arrest following p53 activation. Finally, promoter-associated hypermethylation analysis shows silencing of LED in human tumours. Thus, our study identifies a new layer of complexity in the p53 pathway and suggests its dysregulation in cancer

    Polar lipids of commercial Ulva spp. of different origins: profiling and relevance for seaweed valorization

    Get PDF
    Macroalgae of the genus Ulva have long been used as human food. Local environmental conditions, among other factors, can have an impact on their nutrient and phytochemical composition, as well as on the value of the seaweed for food and non-food applications. This study is the first to initiate a comparison between commercial Ulva spp. from different European origins, France (FR, wild-harvested Ulva spp.), and Portugal (PT, farm-raised Ulva rigida), in terms of proximate composition, esterified fatty acids (FA), and polar lipids. The ash content was higher in PT samples, while FR samples had higher levels of proteins, lipids, and carbohydrates and other compounds. The profile of esterified FA, as well as FA-containing polar lipids at the class and species levels were also significantly different. The FR samples showed about three-fold higher amount of n-3 polyunsaturated FA, while PT samples showed two-fold higher content of monounsaturated FA. Quantification of glycolipids and phospholipids revealed, respectively, two-fold and three-fold higher levels in PT samples. Despite the differences found, the polar lipids identified in both batches included some lipid species with recognized bioactivity, valuing Ulva biomass with functional properties, increasing their added value, and promoting new applications, namely in nutraceutical and food markets.UIDB/50011/2020+UIDP/50011/2020, UID/QUI/00062/2019, UIDB/50006/2020, UIDB/50017/2020+UIDP/50017/2020, LISBOA-01-0145-FEDER-402-022125, POCI-01-0145-FEDER-030962, BPD/UI51/5041/2017, BPD/UI51/5042/2018; EC/H2020/727892/EUinfo:eu-repo/semantics/publishedVersio

    The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer

    Get PDF
    The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses

    Exosomes and Immune Response in Cancer: Friends or Foes?

    No full text
    Exosomes are a type of extracellular vesicle whose study has grown exponentially in recent years. This led to the understanding that these structures, far from being inert waste by-products of cellular functioning, are active players in intercellular communication mechanisms, including in the interactions between cancer cells and the immune system. The deep comprehension of the crosstalk between tumors and the immune systems of their hosts has gained more and more importance, as immunotherapeutic techniques have emerged as viable options for several types of cancer. In this review, we present a comprehensive, updated, and elucidative review of the current knowledge on the functions played by the exosomes in this crosstalk. The roles of these vesicles in tumor antigen presentation, immune activation, and immunosuppression are approached as the relevant interactions between exosomes and the complement system. The last section of this review is reserved for the exploration of the results from the first phase I to II clinical trials of exosomes-based cell-free cancer vaccines

    The Interplay of Exosomes and NK Cells in Cancer Biology

    No full text
    Natural killer (NK) cells are innate lymphoid cells involved in tumor surveillance. These immune cells have the potential to fight cancer growth and metastasis, as such, their deregulation can result in tumor immune escape. Recently exosomes were described as mediators of intercellular communication between cancer and NK cells. The exact role of this subclass of extracellular vesicles (EVs), which transport genetic and molecular material to recipient cells, in NK cell biology in the context of cancer, is still an open question. Several reports have demonstrated that tumor-derived exosomes (TDEs) can exert immunomodulatory activities, including immunosuppression, thus promoting cancer progression. Some reports demonstrate that the interplay between cancer exosomes and NK cells allows tumors to escape immune regulation. On the other hand, tumor exosomes were also described to activate NK cells. Additionally, studies show that NK cell exosomes can modulate the immune system, opening up their potential as an immunotherapeutic strategy for cancer treatment. Our review will focus on the reprogramming effect of cancer exosomes on NK cells, and the immunotherapeutic potential of NK cells-derived exosomes

    Diagnostic Accuracy of Cone Beam Computed Tomography and Periapical Radiography for Detecting Apical Root Resorption in Retention Phase of Orthodontic Patients: A Cross-Sectional Study

    No full text
    Objectives: This clinical study aimed to evaluate and compare the diagnostic accuracy of intraoral periapical radiography (PR) and cone beam computed tomography (CBCT) in detecting external apical root resorption (EARR) in orthodontic patients during the retention phase. Methods: The research involved 41 Caucasian patients who had undergone comprehensive orthodontic treatment, with a total of 328 teeth analyzed. The Kappa values for inter- and intra-examiner agreement were high for both PR and CBCT, indicating a robust level of agreement among examiners. The study used a four-point scale for classifying EARR. Results: This study showed comparable accuracy, sensitivity, and specificity between PR and CBCT when using the most stringent criterion of “Definitely present”. The data suggested that CBCT outperformed PR when using a less stringent criterion (“Definitely present” or “Probably present”), particularly for maxillary incisors. However, overall diagnostic performance, as measured by the area under the ROC curve, showed only a slight advantage for CBCT over PR. Areas under the ROC curve range between 0.85 and 0.90 for PR and between 0.89 and 0.92 for CBCT. According to DeLong’s test, there is no evidence to conclude that the area under the ROC curve is different for PR and CBCT. Conclusions: Both PR and CBCT are accurate diagnostic tools for identifying EARR, with PR being deemed more suitable for routine clinical use due to its cost-effectiveness and lower radiation exposure. The findings emphasize the importance of considering the risk-benefit ratio when deciding on imaging modalities for monitoring EARR in orthodontic patients

    Potential of Microalgae Scenedesmus obliquus Grown in Brewery Wastewater for Biodiesel Production

    No full text
    This work aims to analyze the possibility of growing microalgae Scenedesmus obliquus (S. obliquus) in a brewery wastewater as a potential candidate for biodiesel production. For this purpose S. obliquus was cultivated in a synthetic brewery wastewater at 12,000 Lux of light intensity, with a 12 h period of daily light and aeration. Under these conditions, results revealed an average lipid content of 27 % of dry-weight (dwt) biomass and average biomass and lipid concentrations of respectively, 0.90 and 0.24 g/L (of dwt biomass). The fatty acid methyl esters (FAME) transesterified from the lipids are mainly composed of saturated esters (56.4 %) among which, palmitate (C16:0) is the most significant with a relative percentage of 47.8 % (wt). With regard to the unsaturated esters, the percentage of 10.6 % (wt) obtained for linolenate (C18:3) is below the maximum limit imposed by the EN 14214: 2003 standard for this ester in biodiesel. The average molecular mass of these lipids and FAME are respectively 845.2 and 283.1 g/mol
    corecore