32 research outputs found
Validation of non-REM sleep stage decoding from resting state fMRI using linear support vector machines
A growing body of literature suggests that changes in consciousness are reflected in specific connectivity patterns of the brain as obtained from resting state fMRI (rs-fMRI). As simultaneous electroencephalography (EEG) is often unavailable, decoding of potentially confounding sleep patterns from rs-fMRI itself might be useful and improve data interpretation. Linear support vector machine classifiers were trained on combined rs-fMRI/EEG recordings from 25 subjects to separate wakefulness (S0) from non-rapid eye movement (NREM) sleep stages 1 (S1), 2 (S2), slow wave sleep (SW) and all three sleep stages combined (SX). Classifier performance was quantified by a leave-one-subject-out cross-validation (LOSO-CV) and on an independent validation dataset comprising 19 subjects. Results demonstrated excellent performance with areas under the receiver operating characteristics curve (AUCs) close to 1.0 for the discrimination of sleep from wakefulness (S0|SX), S0|S1, S0|S2 and S0|SW, and good to excellent performance for the classification between sleep stages (S1|S2:~0.9; S1|SW:~1.0; S2|SW:~0.8). Application windows of fMRI data from about 70 s were found as minimum to provide reliable classifications. Discrimination patterns pointed to subcortical-cortical connectivity and within-occipital lobe reorganization of connectivity as strongest carriers of discriminative information. In conclusion, we report that functional connectivity analysis allows valid classification of NREM sleep stages
Resisting Sleep Pressure:Impact on Resting State Functional Network Connectivity
In today's 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning due to increased sleep pressure is still not completely understood. Resting state network (RSN) analyses have become increasingly popular because they allow us to investigate brain activity patterns in the absence of a specific task and to identify changes under different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high (19Â h awake) and normal (10Â h awake) sleep pressure with three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are suited to derive independent component analysis based RSNs. The spatial map differences of these RSNs were rather small, suggesting a strong biological substrate underlying these networks. Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional network connectivity (FNC) between RSNs. In summary, all FNCs of the default mode network with any other network or component showed increasing effects as a function of increased 'time awake'. All other FNCs became more anti-correlated with increased 'time awake'. The sensorimotor networks were the only ones who showed a within network change of FNC, namely decreased connectivity as function of 'time awake'. These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as well as a first reduction of consciousness while becoming drowsy. We think that the specific changes observed in functional network connectivity could imply an impairment of information transfer between the affected RSNs
Subcortical brain alterations in major depressive disorder:findings from the ENIGMA Major Depressive Disorder working group
The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen's d=-0.14, % difference=-1.24). This effect was driven by patients with recurrent MDD (Cohen's d=-0.17, % difference=-1.44), and we detected no differences between first episode patients and controls. Age of onset <= 21 was associated with a smaller hippocampus (Cohen's d=-0.20, % difference=-1.85) and a trend toward smaller amygdala (Cohen's d=-0.11, % difference=-1.23) and larger lateral ventricles (Cohen's d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status
Serial proton MR spectroscopy and diffusion imaging findings in HIV-related herpes simplex encephalitis.
We report the case of pathologically proved atypical herpes simplex encephalitis (HSE) in a 40-year-old male patient with AIDS who was followed up by MR imaging, which included diffusion-weighted imaging and proton MR spectroscopy ((1)H-MRS). MR revealed sparing of hippocampi and limbic cortices, necrosis of both cingulate gyri, and cerebellar involvement. Increased diffusivity and severe metabolic alterations were compatible with biopsy findings of necrotizing inflammation. Clinical recovery corresponded with partial metabolite and diffusion normalization and a myo-inositol increase that indicated evolving gliosis formation further corroborated by immunohistochemistry results. (1)H-MRS and diffusion-weighted imaging may both support the diagnosis of HSE in patients with AIDS and help in the follow-up of necrotizing inflammation