89 research outputs found

    Development of a metagenomic DNA extraction procedure and PCR detection of human enteric bacteria in vegetable salad tissues

    Get PDF
    Outbreaks of illness due to human enteric pathogenic bacteria via fresh vegetables warrant intensive research on changing strategies of these bacteria in alterning their hosts for survival. The systemic infection of human pathogenic bacteria in plants and the plant growth stage at which they establish endophytic relationship is poorly understood. Since cucumber and carrot are major vegetables consumed in the form of unprocessed salads in India, our study aimed at determination of infection abilities of Salmonella enterica sub sp. enterica and Aeromonas hydrophila in carrot and cucumber, respectively based on a  metagenomic detection system. We report an optimized metagenomic DNA isolation procedure from vegetable tissues co-cultivated with bacteria under laboratory conditions. Colonization of bacteria in vegetable tissues was studied by amplification of bacterial 16S rRNA coding region from the metagenome. DNA obtained from carrot vegetable pieces inoculated with Salmonella resulted in expected amplification of 1.2 kb region of bacterial 16S rRNA source sequences. However, the approach failed to detect Aeromonas in cucumber tissues.  We conclude that carrot could be a symptomless alternate host for  Salmonella sp

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Decreased Prevalence of Lymphatic Filariasis among Diabetic Subjects Associated with a Diminished Pro-Inflammatory Cytokine Response (CURES 83)

    Get PDF
    Epidemiological studies have shown an inverse correlation between the incidence of lymphatic filariasis (LF) and the incidence of allergies and autoimmunity. However, the interrelationship between LF and type-2 diabetes is not known and hence, a cross sectional study to assess the baseline prevalence and the correlates of sero-positivity of LF among diabetic subjects was carried out (n = 1416) as part of the CURES study. There was a significant decrease in the prevalence of LF among diabetic subjects (both newly diagnosed [5.7%] and those under treatment [4.3%]) compared to pre-diabetic subjects [9.1%] (p = 0.0095) and non-diabetic subjects [10.4%] (p = 0.0463). A significant decrease in filarial antigen load (p = 0.04) was also seen among diabetic subjects. Serum cytokine levels of the pro-inflammatory cytokines—IL-6 and GM-CSF—were significantly lower in diabetic subjects who were LF positive, compared to those who were LF negative. There were, however, no significant differences in the levels of anti-inflammatory cytokines—IL-10, IL-13 and TGF-β—between the two groups. Although a direct causal link has yet to be shown, there appears to be a striking inverse relationship between the prevalence of LF and diabetes, which is reflected by a diminished pro-inflammatory cytokine response in Asian Indians with diabetes and concomitant LF

    Adenosine and lymphocyte regulation

    Get PDF
    Adenosine is a potent extracellular messenger that is produced in high concentrations under metabolically unfavourable conditions. Tissue hypoxia, consequent to a compromised cellular energy status, is followed by the enhanced breakdown of ATP leading to the release of adenosine. Through the interaction with A2 and A3 membrane receptors, adenosine is devoted to the restoration of tissue homeostasis, acting as a retaliatory metabolite. Several aspects of the immune response have to be taken into consideration and even though in general it is very important to dampen inflammation, in some circumstances, such as the case of cancer, it is also necessary to increase the activity of immune cells against pathogens. Therefore, adenosine receptors that are defined as ‘sensors–of metabolic changes in the local tissue environment may be very important targets for modulation of immune responses and drugs devoted to regulating the adenosinergic system are promising in different clinical situations

    Role of PLEXIND1/TGFβ signaling axis in pancreatic ductal adenocarcinoma progression correlates with the mutational status of KRAS

    Get PDF
    PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma (PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known coreceptors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth factor beta (TGFβ) coreceptor, modulating cell growth through SMAD3 signaling. Our findings demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS (KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregulation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely, PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt), as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Additionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may possess significant therapeutic implications. To our knowledge, this is the first report showing that (1) PLEXIND1 acts as a TGFβ coreceptor and mediates SMAD3 signaling, and (2) differential roles of PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status

    Telomerase activity as an adjunct to high-risk human papillomavirus types 16 and 18 and cytology screening in cervical cancer

    Get PDF
    Telomerase is a ribonucleoprotein comprising an RNA template, the telomerase-associated protein and its catalytic subunit, human telomerase reverse transcriptase (hTERT). Telomerase activation is a critical step in cellular immortalisation and development of cancer. Enhanced telomerase activity has been demonstrated in cervical cancer. In the present study telomerase activity and hTERT mRNA expression were evaluated and correlated with the presence of human papillomavirus (HPV) infection and cytological changes in the cervical lesions. Telomerase activity was assayed by telomeric repeat amplification protocol, hTERT mRNA expression by reverse transcriptase polymerase chain reaction and presence of high risk HPV (HR-HPV) infection by polymerase chain reaction. Out of 154 cervical samples of different cytology, 90 (58.44%) were positive for HR-HPV types 16/18, while among 55 normal cervical scrapes, 10 (18.18%) were HPV DNA positive. All 59 invasive cancer samples showed a very high telomerase activity. Among dysplasia, seven (63.6%) mild dysplasia, 18 (100%) of moderate, 20 (100%) of severe dysplasia and 6 (100%) carcinoma in situ (CIS) samples were positive with mild to moderate to high to very high telomerase activity respectively. Seven (12.7%) samples of apparently normal cervical scrapes were weakly positive for telomerase activity. We observed a good correlation (P<0.001) between telomerase activity and HR-HPV 16/18 positivity with a sensitivity of 88.1% for HPV and 100% for telomerase activity. It is suggested that telomerase activity may be used as an adjunct to cytology and HPV DNA testing in triaging women with cervical lesions
    corecore