5 research outputs found

    Designing spin-1 lattice models using polar molecules

    Get PDF
    We describe how to design a large class of always on spin-1 interactions between polar molecules trapped in an optical lattice. The spin degrees of freedom correspond to the hyperfine levels of a ro-vibrational ground state molecule. Interactions are induced using a microwave field to mix ground states in one hyperfine manifold with the spin entangled dipole-dipole coupled excited states. Using multiple fields anistropic models in one, two, or three dimensions, can be built with tunable spatial range. An illustrative example in one dimension is the generalized Haldane model, which at a specific parameter has a gapped valence bond solid ground state. The interaction strengths are large compared to decoherence rates and should allow for probing the rich phase structure of strongly correlated systems, including dimerized and gapped phases.Comment: 24 pages, 5 figure

    Enhancement of the electric dipole moment of the electron in BaF molecule

    Full text link
    We report results of ab initio calculation of the spin-rotational Hamiltonian parameters including P- and P,T-odd terms for the BaF molecule. The ground state wave function of BaF molecule is found with the help of the Relativistic Effective Core Potential method followed by the restoration of molecular four-component spinors in the core region of barium in the framework of a non-variational procedure. Core polarization effects are included with the help of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine constants the accuracy of this method is about 5-10%.Comment: 8 pages, REVTEX, report at II International Symposium on Symmetries in Subatomic Physics, Seattle 199

    References

    No full text

    Das Plattenepithelkarzinom der Haut und Halbschleimhäute

    No full text
    corecore