549 research outputs found

    Absolute negative conductivity in two-dimensional electron systems under microwave radiation

    Full text link
    We overview mechanisms of absolute negative conductivity in two-dimensional electron systems in a magnetic field irradiated with microwaves and provide plausible explanations of the features observed in recent experiments related to the so-called zero-resistance (zero-conductance) states.Comment: 4 pages, 7 figures, presented at Internat. Symp. on Functional Semiconductor Nanosystems, Atsugi, Japan, Nov. 12-14, 2003, be published in Physica

    Tunneling Recombination in Optically Pumped Graphene with Electron-Hole Puddles

    Full text link
    We evaluate recombination of electrons and holes in optically pumped graphene associated with the interband tunneling between electron-hole puddles and calculate the recombination rate and time. It is demonstrated that this mechanism can be dominant in a wide range of pumping intensities. We show that the tunneling recombination rate and time are nonmonotonic functions of the quasi-Fermi energies of electrons and holes and optical pumping intensity. This can result in hysteresis phenomena.Comment: 4 pages, 3 figure

    Microwave-induced magnetoresistance of two-dimensional electrons interacting with acoustic phonons

    Full text link
    The influence of electron-phonon interaction on magnetotransport in two-dimensional electron systems under microwave irradiation is studied theoretically. Apart from the phonon-induced resistance oscillations which exist in the absence of microwaves, the magnetoresistance of irradiated samples contains oscillating contributions due to electron scattering on both impurities and acoustic phonons. The contributions due to electron-phonon scattering are described as a result of the interference of phonon-induced and microwave-induced resistance oscillations. In addition, microwave heating of electrons leads to a special kind of phonon-induced oscillations. The relative strength of different contributions and their dependence on parameters are discussed. The interplay of numerous oscillating contributions suggests a peculiar magnetoresistance picture in high-mobility layers at the temperatures when electron-phonon scattering becomes important.Comment: 12 pages, 2 figure

    Coulombic effects on magnetoconductivity oscillations induced by microwave excitation in multisubband two-dimensional electron systems

    Get PDF
    We develop a theory of magneto-oscillations in photoconductivity of multisubband two-dimensional electron systems which takes into account strong Coulomb interaction between electrons. In the presence of a magnetic field oriented perpendicular, internal electric fields of fluctuational origin cause fast drift velocities of electron orbit centers which affect probabilities of inter-subband scattering and the photoconductivity. For the electron system formed on the liquid helium surface, internal forces are shown to suppress the amplitude of magneto-oscillations, and change positions of magnetoconductivity minima which evolve in zero-resistance states for high radiation power.Comment: 9 pages, 6 figure

    Non-linear transport phenomena in a two-subband system

    Get PDF
    We study non-linear transport phenomena in a high-mobility bilayer system with two closely spaced populated electronic subbands in a perpendicular magnetic field. For a moderate direct current excitation, we observe zero-differential-resistance states with a characteristic 1/B periodicity. We investigate, both experimentally and theoretically, the Hall field-induced resistance oscillations which modulate the high-frequency magneto-intersubband oscillations in our system if we increase the current. We also observe and describe the influence of direct current on the magnetoresistance in the presence of microwave irradiation.Comment: 8 pages, 6 figure

    Effect of heating and cooling of photogenerated electron-hole plasma in optically pumped graphene on population inversion

    Full text link
    We study the characteristics of photogenerated electron-hole plasma in optically pumped graphene layers at elevated (room) temperatures when the interband and intraband processes of emission and absorption of optical phonons play a crucial role. The electron-hole plasma heating and cooling as well as the effect of nonequilibrium optical phonons are taken into account. % The dependences of the quasi-Fermi energy and effective temperature of optically pumped graphene layers on the intensity of pumping radiation are calculated. The variation of the frequency dependences dynamic conductivity with increasing pumping intensity as well as the conditions when this conductivity becomes negative in a certain range of frequencies are considered. % The effects under consideration can markedly influence the achievement of the negative dynamic conductivity in optically pumped graphene layers associated with the population inversion and, hence, the realization graphene-based terahertz and infrared lasers operating at room temperatures.Comment: 12 pages, 7 figure
    corecore