13,076 research outputs found
Linking horizontal and vertical transports of biomass fire emissions to the Tropical Atlantic Ozone Paradox during the Northern Hemisphere winter season: climatology
International audienceDuring the Northern hemisphere winter season, biomass burning is widespread in West Africa, yet the total tropospheric column ozone values (<30 DU) over much of the Tropical Atlantic Ocean (15° N?5° S) are relatively low. At the same time, the tropospheric column ozone values in the Southern Tropical Atlantic are higher than those in the Northern Hemisphere (ozone paradox). We examine the causes for low tropospheric column ozone values by considering the horizontal and vertical transport of biomass fire emissions in West Africa during November through March, using observed data which characterizes fires, aerosols, horizontal winds, precipitation, lightning and outgoing longwave radiation. We have found that easterly winds prevail in the lower troposphere but transition to westerly winds at pressure levels lower than 500 hPa. A persistent anticyclone over West Africa at 700 hPa is responsible for strong easterly winds, which causes a net outflow of ozone/ozone precursors from biomass burning in West Africa across the Atlantic Ocean towards South America. The lowest outgoing longwave radiation (OLR) and highest precipitation rates are generally found over the central Atlantic, some distance downstream of fires in West Africa making the vertical transport of ozone and ozone precursors less likely and ozone destruction more likely. However, lightning over land areas in Central Africa and South America can lead to enhanced ozone levels in the upper troposphere especially over the Southern tropical Atlantic during the Northern Hemisphere winter season
Space-borne observations link the tropical atlantic ozone maximum and paradox to lightning
International audienceThe potential enhancement of tropospheric column ozone values over the Tropical Atlantic Ocean on a seasonal basis by lightning is investigated using satellite derived ozone data, TRMM lightning data, ozonesonde data and NCEP reanalysis during 1998-2001. Our results show that the number of lightning flashes in Africa and South America reach a maximum during September, October and November (SON). The spatial patterns of winds in combination with lightning from West Africa, Central Africa and South America is likely responsible for enriching middle/upper troposphere ozone over the Tropical South Atlantic during SON. Moreover, lightning flashes are high in the hemisphere opposite to biomass burning during December, January, and February (DJF) and June, July and August (JJA). This pattern leads to an enrichment of ozone in the middle/upper troposphere in the Southern Hemisphere Tropics during DJF and the Northern Hemisphere Tropics during JJA. During JJA the largest numbers of lightning flashes are observed in West Africa, enriching tropospheric column ozone to the north of 5S in the absence of biomass burning. During DJF, lightning is concentrated in South America and Central Africa enriching tropospheric column ozone south of the Equator in the absence of biomass burning
Spin Berry phase in the Fermi arc states
Unusual electronic property of a Weyl semi-metallic nanowire is revealed. Its
band dispersion exhibits multiple subbands of partially flat dispersion,
originating from the Fermi arc states. Remarkably, the lowest energy flat
subbands bear a finite size energy gap, implying that electrons in the Fermi
arc surface states are susceptible of the spin Berry phase. This is shown to be
a consequence of spin-to-surface locking in the surface electronic states. We
verify this behavior and the existence of spin Berry phase in the low-energy
effective theory of Fermi arc surface states on a cylindrical nanowire by
deriving the latter from a bulk Weyl Hamiltonian. We point out that in any
surface state exhibiting a spin Berry phase pi, a zero-energy bound state is
formed along a magnetic flux tube of strength, hc/(2e). This effect is
highlighted in a surfaceless bulk system pierced by a dislocation line, which
shows a 1D chiral mode along the dislocation line.Comment: 9 pages, 9 figure
Selective copper extraction by multi-modified mesoporous silica material, SBA-15
© 2018 Selective copper (Cu) recovery from wastewater mitigates environmental pollution and is economically valuable. Mesoporous silica adsorbents, SBA-15, with amine-grafting (SBA-15-NH2) and manganese loading along with amine-grafting (Mn-SBA-15-NH2) were fabricated using KMnO4 and 3-aminopropyltriethoxysilane. The characteristics of the synthesized adsorbents were evaluated in detail in terms of its crystal structure peaks, surface area and pore size distribution, transmission electron microscope and X-ray photoelectron spectroscopy. The results established the 2.08 mmol/g of Cu adsorption capacity on Mn-SBA-15-NH2. Furthermore, in a mixed heavy metal solution, high selective Cu adsorption capacity on Mn-SBA-15-NH2 (2.01 mmol/g) was achieved while maintaining 96% adsorption amount as that of a single Cu solution. Comparatively, Cu adsorption on SBA-15-NH2 decreased by half due to high competition with other heavy metals. Optimal Cu adsorption occurred at pH 5. This pH condition enabled grafted amine group in Mn-SBA-15-NH2 to form strong chelating bonds with Cu, avoiding protonation of amine group (below pH 5) as well as precipitation (above pH 5). The adsorption equilibrium well fitted to Langmuir and Freundlich isotherm models, while kinetic results were represented by models of linear driving force approximation (LDFA) and pore diffusion model (PDM). High regeneration and reuse capacity of Mn-SBA-15-NH2 were well established by its capacity to maintain 90% adsorption capacity in a multiple adsorption-desorption cycle. Cu was selectively extracted from Mn-SBA-15-NH2 with an acid solution
First-Order Melting of a Moving Vortex Lattice: Effects of Disorder
We study the melting of a moving vortex lattice through numerical simulations
with the current driven 3D XY model with disorder. We find that there is a
first-order phase transition even for large disorder when the corresponding
equilibrium transition is continuous. The low temperature phase is an
anisotropic moving glass.Comment: Important changes from original version. Finite size analysis of
results has been added. Figure 2 has been changed. There is a new additional
Figure. To be published in Physical Review Letter
Synthetic Observations of Simulated Radio Galaxies I: Radio and X-ray Analysis
We present an extensive synthetic observational analysis of numerically-
simulated radio galaxies designed to explore the effectiveness of conventional
observational analyses at recovering physical source properties. These are the
first numerical simulations with sufficient physical detail to allow such a
study. The present paper focuses on extraction of magnetic field properties
from nonthermal intensity information. Synchrotron and inverse-Compton
intensities provided meaningful information about distributions and strengths
of magnetic fields, although considerable care was called for. Correlations
between radio and X-ray surface brightness correctly revealed useful dynamical
relationships between particles and fields. Magnetic field strength estimates
derived from the ratio of X-ray to radio intensity were mostly within about a
factor of two of the RMS field strength along a given line of sight. When
emissions along a given line of sight were dominated by regions close to the
minimum energy/equipartition condition, the field strengths derived from the
standard power-law-spectrum minimum energy calculation were also reasonably
close to actual field strengths, except when spectral aging was evident.
Otherwise, biases in the minimum- energy magnetic field estimation mirrored
actual differences from equipartition. The ratio of the inverse-Compton
magnetic field to the minimum-energy magnetic field provided a rough measure of
the actual total energy in particles and fields in most instances, within an
order of magnitude. This may provide a practical limit to the accuracy with
which one may be able to establish the internal energy density or pressure of
optically thin synchrotron sources.Comment: 43 pages, 14 figures; accepted for publication in ApJ, v601 n2
February 1, 200
Entanglement entropy and the Berry phase in solid states
The entanglement entropy (von Neumann entropy) has been used to characterize
the complexity of many-body ground states in strongly correlated systems. In
this paper, we try to establish a connection between the lower bound of the von
Neumann entropy and the Berry phase defined for quantum ground states. As an
example, a family of translational invariant lattice free fermion systems with
two bands separated by a finite gap is investigated. We argue that, for one
dimensional (1D) cases, when the Berry phase (Zak's phase) of the occupied band
is equal to and when the ground state respects a
discrete unitary particle-hole symmetry (chiral symmetry), the entanglement
entropy in the thermodynamic limit is at least larger than (per
boundary), i.e., the entanglement entropy that corresponds to a maximally
entangled pair of two qubits. We also discuss this lower bound is related to
vanishing of the expectation value of a certain non-local operator which
creates a kink in 1D systems.Comment: 11 pages, 4 figures, new references adde
Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates
There is a pressing need for robust and straightforward methods to create
potentials for trapping Bose-Einstein condensates which are simultaneously
dynamic, fully arbitrary, and sufficiently stable to not heat the ultracold
gas. We show here how to accomplish these goals, using a rapidly-moving laser
beam that "paints" a time-averaged optical dipole potential in which we create
BECs in a variety of geometries, including toroids, ring lattices, and square
lattices. Matter wave interference patterns confirm that the trapped gas is a
condensate. As a simple illustration of dynamics, we show that the technique
can transform a toroidal condensate into a ring lattice and back into a toroid.
The technique is general and should work with any sufficiently polarizable
low-energy particles.Comment: Minor text changes and three references added. This is the final
version published in New Journal of Physic
Where's the Doughnut? LBV bubbles and Aspherical Fast Winds
In this paper we address the issue of the origin of LBV bipolar bubbles.
Previous studies have explained the shapes of LBV nebulae, such as Car,
by invoking the interaction of an isotropic fast wind with a previously
deposited, slow aspherical wind (a ``slow torus''). In this paper we focus on
the opposite scenario where an aspherical fast wind expands into a previously
deposited isotropic slow wind. Using high resolution hydrodynamic simulations,
which include the effects of radiative cooling, we have completed a series of
numerical experiments to test if and how aspherical fast winds effect wind
blown bubble morphologies. Our experiments explore a variety of models for the
latitudinal variations of fast wind flow parameters. The simulations
demonstrate that aspherical fast winds can produce strongly bipolar outflows.
In addition the properties of outflows recover some important aspects of LBV
bubbles which the previous "slow torus" models can not.Comment: 23 pages, 6 figures, to appear the Astrophysical Journa
- …