13 research outputs found

    Innovative polymer-based membrane materials containing reactive (RILs) and polymerizable (PIL) ionic liquids

    No full text
    Au cours des dernières décennies, les technologies membranaires ont largement contribué à l’amélioration des procédés de séparation à l’échelle industrielle grâce à de nombreux avantages, tels que la sélectivité de la séparation élevée, la possibilité de travailler avec des composés thermolabiles et la faible demande en énergie, ainsi que la possibilité de combiner les technologies membranaires avec d'autres procédés de séparation. Le procédé de pervaporation est une technique de séparation membranaire importante utilisée pour séparer les mélanges liquides binaires ou multicomposants, y compris les solvants à point d’ébullition proche, les mélanges azéotropes et les isomères. Il s’agit du transfert sélectif de matière à travers une membrane dense. Au cours de cette opération, le perméat sous forme vapeur est condensé sur une paroi froide, mais, contrairement à la distillation, seule une faible partie de la charge subit ce changement d’état. Les membranes utilisées dans la pervaporation doivent posséder une forte sélectivité, une stabilité chimique et une résistance mécanique à haute température élevées. La sélectivité et les propriétés de transport de la membrane déterminent l'efficacité globale du processus de séparation. La caractérisation approfondie des membranes est cruciale pour bien comprendre l’influence de la structure de la membrane et des conditions de préparation de la membrane sur les caractéristiques d’équilibre, de séparation et de transport des membranes étudiées, en vue de développer de nouveaux matériaux polymères efficaces. Les nombreuses recherches ont également été menées sur le développement des membranes avec de liquides ioniques (LIs) afin de personnaliser les propriétés de séparation des membranes utilisées dans la séparation des liquides par pervaporation, la séparation des gaz et la séparation des ions métalliques ainsi que les membranes conductrices dans les piles à combustible. Les LIs sont caractérisés par une bonne stabilité thermique, une conductivité ionique élevée, une pression de vapeur négligeable et un point de fusion assez bas. En raison de leurs nombreuses propriétés uniques, les membranes polymères contenant des LIs possèdent une large gamme d'avantages, comme de meilleures propriétés de séparation que les membranes polymères classiques. Ce fait est lié à une diffusion moléculaire beaucoup plus élevée dans un liquide ionique que dans des polymères. Par conséquent, l'utilisation de membranes à base de polymères et LIs dans les processus de séparation permettrait une sélectivité de séparation élevée et des flux plus importants. La structure et les propriétés physicochimiques des LIs peuvent être ciblées en fonction de l’application afin d'obtenir un matériau polymère approprié. En revanche, même si l’application de membranes hybrides à base de polymères et LIs suscite un intérêt croissant, leur utilisation dans les procédés de séparation reste limitée en raison des pertes de LI non lié. Cette thèse de doctorat en co-tutelle est réalisée entre la Faculté de Chimie de l'Université Nicolaus Copernicus (NCU) à Toruń (Pologne) et le Laboratoire Polymères, Biopolymères, Surfaces UMR 6270 CNRS de l’Université de Rouen Normandie (France). L’objectif principal de la thèse est d’élaborer de nouvelles membranes denses à base de poly (alcool vinylique) (PVA) et d’acétate-propionate de cellulose (CAP) et de divers LIs réactifs et polymérisables ceci afin d’obtenir un système polymère-liquide ionique dans lequel le LI est stabilisé par liaison covalente avec les chaînes macromoléculaires du polymère. L'étude des propriétés physicochimiques et d'équilibre des membranes a été effectuée ainsi que l’analyse de leurs propriétés de transport. De plus, les membranes sélectionnées ont été testées dans un processus de pervaporation en contact avec le mélange eau-propane-2-ol.In the last decades, membrane separation has played an important role in many industrial processes thanks to its versatility, low energy consumption, high performances of membranes, as well as a possibility of combining membrane technologies with other separation processes. Membrane technologies gave a great contribution to the improvement of separation processes in the industrial scale thanks to a number of advantages, such as the high selectivity of the separation, the opportunity to work with thermolabile compounds, and low energy demand. Pervaporation process is an important membrane separation technique used to separate binary or multicomponent liquid mixtures including close boiling solvents, azeotrope mixtures, and isomers. During pervaporation, feed components are in the direct contact with one side of the lyophilic membrane, while the selected components are preferentially transported across the membrane to the permeate side. Membranes used in pervaporation must be characterized by high selectivity, chemical stability, and mechanical strength at high temperatures. Selectivity and transport properties of the membrane determine the overall efficiency of the separation process. The comprehensive characterization of membranes is the crucial approach and can lead to broaden the knowledge about the influence of the membrane structure and membrane preparation conditions on the equilibrium, separation, and transport characteristics of the studied membranes, in order to develop new polymer materials with the expected efficiency of the separation process. Research has been also focused on the development of the membranes filled with ILs in order to tailor the separation properties of the developed membranes used in liquid separation by pervaporation, gas separation, and separation of metal ions as well as the conducting barriers in fuel cells. ILs are characterized by good thermal stability, high ionic conductivity, negligible vapor pressure, and low melting point. Due to their numerous unique properties, polymer membranes containing ILs (polymer-ILs) possess wide range of advantages, like better separation properties than the classical polymer membranes. This fact is related with much higher molecular diffusion in ionic liquid than in polymers. Therefore, the use of polymer-ILs in separation processes would result in superior separation behavior and higher fluxes. Morphology and physicochemical properties of ILs can be “tailored” depending on the separated system in order to obtain a suitable polymer material for a given separation process without preparation of a chemically new membrane. Even though there is a growing interest in the application of polymer membranes filled with ILs, the polymer-ILs based separation processes are limited due to the losses of the unbound ionic liquid in the course of the exploitation. The PhD is realized in the frame of "co-tutelle" system between the Faculty of Chemistry at the Nicolaus Copernicus University (NCU) in Toruń, Poland (Membranes and Membrane Separation Processes Research Group) and the University of Rouen Normandy, France (Barrier Polymer Materials and Membranes (MPBM) Research Group of the Laboratory of Polymers, Biopolymers, Surfaces (PBS)). The main aim of the present PhD thesis is to elaborate novel dense membranes based on poly(vinyl alcohol) (PVA) and cellulose acetate propionate (CAP) filled with various reactive and polymerizable ILs in order to obtain the polymer-ionic liquid system in which ionic liquids are linked inside the polymer structure. The investigation of physicochemical characteristics and study of the equilibrium, barrier, and transport properties of the obtained membranes was carried out. Furthermore, the selected membranes were tested in pervaporation process in contact with water-propan-2-ol mixture, water and gas permeation measurements

    Matériaux innovants à base de polymères et de liquides ioniques.

    No full text
    In the last decades, membrane separation has played an important role in many industrial processes thanks to its versatility, low energy consumption, high performances of membranes, as well as a possibility of combining membrane technologies with other separation processes. Membrane technologies gave a great contribution to the improvement of separation processes in the industrial scale thanks to a number of advantages, such as the high selectivity of the separation, the opportunity to work with thermolabile compounds, and low energy demand. Pervaporation process is an important membrane separation technique used to separate binary or multicomponent liquid mixtures including close boiling solvents, azeotrope mixtures, and isomers. During pervaporation, feed components are in the direct contact with one side of the lyophilic membrane, while the selected components are preferentially transported across the membrane to the permeate side. Membranes used in pervaporation must be characterized by high selectivity, chemical stability, and mechanical strength at high temperatures. Selectivity and transport properties of the membrane determine the overall efficiency of the separation process. The comprehensive characterization of membranes is the crucial approach and can lead to broaden the knowledge about the influence of the membrane structure and membrane preparation conditions on the equilibrium, separation, and transport characteristics of the studied membranes, in order to develop new polymer materials with the expected efficiency of the separation process. Research has been also focused on the development of the membranes filled with ILs in order to tailor the separation properties of the developed membranes used in liquid separation by pervaporation, gas separation, and separation of metal ions as well as the conducting barriers in fuel cells. ILs are characterized by good thermal stability, high ionic conductivity, negligible vapor pressure, and low melting point. Due to their numerous unique properties, polymer membranes containing ILs (polymer-ILs) possess wide range of advantages, like better separation properties than the classical polymer membranes. This fact is related with much higher molecular diffusion in ionic liquid than in polymers. Therefore, the use of polymer-ILs in separation processes would result in superior separation behavior and higher fluxes. Morphology and physicochemical properties of ILs can be “tailored” depending on the separated system in order to obtain a suitable polymer material for a given separation process without preparation of a chemically new membrane. Even though there is a growing interest in the application of polymer membranes filled with ILs, the polymer-ILs based separation processes are limited due to the losses of the unbound ionic liquid in the course of the exploitation. The PhD is realized in the frame of "co-tutelle" system between the Faculty of Chemistry at the Nicolaus Copernicus University (NCU) in Toruń, Poland (Membranes and Membrane Separation Processes Research Group) and the University of Rouen Normandy, France (Barrier Polymer Materials and Membranes (MPBM) Research Group of the Laboratory of Polymers, Biopolymers, Surfaces (PBS)). The main aim of the present PhD thesis is to elaborate novel dense membranes based on poly(vinyl alcohol) (PVA) and cellulose acetate propionate (CAP) filled with various reactive and polymerizable ILs in order to obtain the polymer-ionic liquid system in which ionic liquids are linked inside the polymer structure. The investigation of physicochemical characteristics and study of the equilibrium, barrier, and transport properties of the obtained membranes was carried out. Furthermore, the selected membranes were tested in pervaporation process in contact with water-propan-2-ol mixture, water and gas permeation measurements.Au cours des dernières décennies, les technologies membranaires ont largement contribué à l’amélioration des procédés de séparation à l’échelle industrielle grâce à de nombreux avantages, tels que la sélectivité de la séparation élevée, la possibilité de travailler avec des composés thermolabiles et la faible demande en énergie, ainsi que la possibilité de combiner les technologies membranaires avec d'autres procédés de séparation. Le procédé de pervaporation est une technique de séparation membranaire importante utilisée pour séparer les mélanges liquides binaires ou multicomposants, y compris les solvants à point d’ébullition proche, les mélanges azéotropes et les isomères. Il s’agit du transfert sélectif de matière à travers une membrane dense. Au cours de cette opération, le perméat sous forme vapeur est condensé sur une paroi froide, mais, contrairement à la distillation, seule une faible partie de la charge subit ce changement d’état. Les membranes utilisées dans la pervaporation doivent posséder une forte sélectivité, une stabilité chimique et une résistance mécanique à haute température élevées. La sélectivité et les propriétés de transport de la membrane déterminent l'efficacité globale du processus de séparation. La caractérisation approfondie des membranes est cruciale pour bien comprendre l’influence de la structure de la membrane et des conditions de préparation de la membrane sur les caractéristiques d’équilibre, de séparation et de transport des membranes étudiées, en vue de développer de nouveaux matériaux polymères efficaces. Les nombreuses recherches ont également été menées sur le développement des membranes avec de liquides ioniques (LIs) afin de personnaliser les propriétés de séparation des membranes utilisées dans la séparation des liquides par pervaporation, la séparation des gaz et la séparation des ions métalliques ainsi que les membranes conductrices dans les piles à combustible. Les LIs sont caractérisés par une bonne stabilité thermique, une conductivité ionique élevée, une pression de vapeur négligeable et un point de fusion assez bas. En raison de leurs nombreuses propriétés uniques, les membranes polymères contenant des LIs possèdent une large gamme d'avantages, comme de meilleures propriétés de séparation que les membranes polymères classiques. Ce fait est lié à une diffusion moléculaire beaucoup plus élevée dans un liquide ionique que dans des polymères. Par conséquent, l'utilisation de membranes à base de polymères et LIs dans les processus de séparation permettrait une sélectivité de séparation élevée et des flux plus importants. La structure et les propriétés physicochimiques des LIs peuvent être ciblées en fonction de l’application afin d'obtenir un matériau polymère approprié. En revanche, même si l’application de membranes hybrides à base de polymères et LIs suscite un intérêt croissant, leur utilisation dans les procédés de séparation reste limitée en raison des pertes de LI non lié. Cette thèse de doctorat en co-tutelle est réalisée entre la Faculté de Chimie de l'Université Nicolaus Copernicus (NCU) à Toruń (Pologne) et le Laboratoire Polymères, Biopolymères, Surfaces UMR 6270 CNRS de l’Université de Rouen Normandie (France). L’objectif principal de la thèse est d’élaborer de nouvelles membranes denses à base de poly (alcool vinylique) (PVA) et d’acétate-propionate de cellulose (CAP) et de divers LIs réactifs et polymérisables ceci afin d’obtenir un système polymère-liquide ionique dans lequel le LI est stabilisé par liaison covalente avec les chaînes macromoléculaires du polymère. L'étude des propriétés physicochimiques et d'équilibre des membranes a été effectuée ainsi que l’analyse de leurs propriétés de transport. De plus, les membranes sélectionnées ont été testées dans un processus de pervaporation en contact avec le mélange eau-propane-2-ol

    The Synthesis of Poly(Vinyl Alcohol) Grafted with Fluorinated Protic Ionic Liquids Containing Sulfo Functional Groups

    No full text
    There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs’ desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (–SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups

    The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes

    No full text
    Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL) (3-(1,3-diethoxy-1,3-dioxopropan-2-yl)-1-methyl-1H-imidazol-3-ium) was used to prepare novel dense cellulose acetate propionate (CAP) based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC) and acetyl tributyl citrate (ATBC). Thermogravimetric analysis (TGA) testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water)
    corecore