103 research outputs found

    The MEF2A and MEF2D isoforms are differentially regulated in muscle and adipose tissue during states of insulin deficiency

    Get PDF
    Previously we have demonstrated that striated muscle GLUT4 gene expression decreased following streptozotocin-induced diabetes due to a loss of MEF2A transcription factor expression without any significant effect on the MEF2D isoform (Mora, S. and J. E. Pessin (2000) J Biol Chem, 275:16323-16328). In contrast to both cardiac and skeletal muscle, adipose tissue displays a selective decrease in MEF2D expression in diabetes without any significant alteration in MEF2A protein content. Adipose tissue also expresses very low levels of the MEF2 transcription factors and nuclear extracts from white adipose tissue exhibit poor in vitro binding to the MEF2 element. However, addition of in vitro synthesized MEF2A to adipose nuclear extracts results in the formation of the expected MEF2/DNA complex. More importantly, binding to the MEF2 element was also compromised in the diabetic condition. Furthermore, in vivo overexpression of MEF2A selectively in adipose tissue did not affect GLUT4 or MEF2D expression and was not sufficient to prevent GLUT4 down-regulation that occurred in insulin-deficient states

    Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    Get PDF
    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely contributors to impaired functional tasks that are ambulatory in nature (See abstract Functional Task Test: 1). Interestingly, no significant changes in central activation capacity were detected. Therefore, impairments in muscle function in response to short-duration space flight are likely myocellular rather than neuromotor in nature

    Effects of Reduced Strength on Self-Selected Pacing for Long-Duration Activities

    Get PDF
    Strength and aerobic capacity are predictors of astronaut performance for extravehicular activities (EVA) during exploration missions. It is expected that astronauts will selfselect a pace below their ventilatory threshold (VT). PURPOSE: To determine the percentage of VT that subjects selfselect for prolonged occupational tasks. METHODS: Maximal aerobic capacity and a variety of lowerbody strength and power variables were assessed in 17 subjects who climbed 480 rungs on a ladder ergometer and then completed 10 km on a treadmill as quickly as possible using a selfselected pace. The tasks were performed on 4 days, with a weighted suit providing 0% (suit fabric only), 40%, 60%, and 80% of additional bodyweight (BW), thereby altering the strength to BW ratio. Oxygen consumption and heart rate were continuously measured. Repeated measures ANOVA and posthoc comparisons were performed on the percent of VT values under each suited condition. RESULTS: Subjects consistently selfpaced at or below VT for both tasks and the pace was related to suit weight. At the midpoint for the ladder climb the 80% BW condition elicited the lowest metabolic cost (19+/-14% below VT), significantly different than the 0% BW (3+/-16%, P=0.002) and the 40% BW conditions (5+/-22%, P=0.023). The 60% BW condition (13+/-19%) was different than the 40% BW condition (P=0.034). Upon completion of the ladder task there were no differences among the conditions (0%BW: 3+/-18%; 40%BW: 3+/-21%; 60%BW: 8+/-25%; 80%BW: 10+/-18%). All subjects failed to complete 5km at 80%BW. At the midpoint of the treadmill test the three remaining conditions were all significantly different (0%BW: 20+/-15%; 40%BW: 33+/-15%; 60%BW: 41+/-19%). Upon completion of the treadmill test the 60% BW condition (38+/-12%) was significantly different than the 40% BW (28+/-15%, P=0.024). CONCLUSIONS: Decreasing relative strength results in progressive and disproportionate decreases (relative to VT) in selfselected pacing during longduration activities. Thus, during prolonged, endurancetype activities, large reductions in strength cause notable performance decrements despite no changes in aerobic capacity. These data highlight the importance of both aerobic capacity and muscle strength to the performance of prolonged EVA in exploration mission scenarios

    Effects of Short- and Long-Duration Space Flight on Neuromuscular Function

    Get PDF
    The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight

    Heart Rate Responses to Unaided Orion Side Hatch Egress in the Neutral Buoyancy Laboratory

    Get PDF
    NASA is developing the Orion capsule as a vehicle for transporting crewmembers to and from the International Space Station (ISS) and for future human space exploration missions. Orion and other commercial vehicles are designed to splash down in the ocean where nominally support personnel will assist crewmembers in egressing the vehicle. However, off-nominal scenarios will require crewmembers to egress the vehicle unaided, deploy survival equipment, and ingress a life raft. PURPOSE: To determine the heart rate (HR) responses to unaided Orion side hatch egress and raft ingress as a part of the NASA Crew Survival Engineering Team's evaluation of the PORT Orion mockup in the Neutral Buoyancy Laboratory (NBL). METHODS: Nineteen test subjects, including four astronauts (N=19, 14 males/5 females, 38.6+/-8.4 y, 174.4+/-9.6 cm, 75.7+/-13.1 kg), completed a graded maximal test on a cycle ergometer to determine VO2peak and HRpeak and were divided into five crews of four members each; one subject served on two crews. Each crew was required to deploy a life raft, egress the Orion vehicle from the side hatch, and ingress the life raft with two 8 kg emergency packs per crew. Each crew performed this activity one to three times; a total of ten full egresses were completed. Subjects wore a suit that was similar in form, mass, and function to the Modified Advanced Crew Escape Suit (MACES) including helmet, gloves, boots, supplemental O2 bottles, and a CO2-inflated life preserver (approx.18 kg); subjects began each trial seated supine in the PORT Orion mockup with seat belts and mockup O2 and communication connections and ended each trial with all four crewmembers inside the life raft. RESULTS: VO2peak was 40.8+/-6.8 mL/kg/min (3.1+/-0.7 L/min); HRpeak was 181+/-10 bpm. Total egress time across trials was 5.0+/-1.6 min (range: 2.8-8.0 min); all subjects were able to successfully complete all trials. Average maximum HR at activity start, at the hatch opening, in the water, and in the raft, was 108, 137, 147, and 153 bpm, respectively; these values corresponded to 59+/-10%, 73+/-8%, 82+/-3%, and 84+/-6% of HRpeak, respectively. The highest HRs were seen after raft ingress and ranged from 72-99% HRpeak. Across all trials, cumulative averages of 5.4, 3.0, 1.1, and 0.2 min were spent at HRs >60%, >70%, >80%, and >90% HRpeak, respectively. CONCLUSION: Unaided Orion side hatch egress in the NBL is a relatively short-duration activity that elicits a high HR response for several min. Although all crewmembers successfully completed this activity, additional factors such as high seas, poor visibility, an incapacitated crewmember, neurovestibular perturbation, and neuromuscular deconditioning characteristic of a true operational environment may increase the physiologic demand (or decrease crewmembers' physiologic capacity) of unaided Orion side hatch egress. Additionally, landing conditions may require the crewmembers to egress from the top hatch, which is expected to be even more physiologically demanding; this condition will be evaluated in subsequent collaborative testing with the NASA Crew Survival Engineering Team

    Sweat Rates During Continuous and Interval Aerobic Exercise: Implications for NASA Multipurpose Crew Vehicle (MPCV) Missions

    Get PDF
    Aerobic deconditioning is one of the effects spaceflight. Impaired crewmember performance due to loss of aerobic conditioning is one of the risks identified for mitigation by the NASA Human Research Program. Missions longer than 8 days will involve exercise countermeasures including those aimed at preventing the loss of aerobic capacity. The NASA Multipurpose Crew Vehicle (MPCV) will be NASA's centerpiece architecture for human space exploration beyond low Earth orbit. Aerobic exercise within the small habitable volume of the MPCV is expected to challenge the ability of the environmental control systems, especially in terms of moisture control. Exercising humans contribute moisture to the environment by increased respiratory rate (exhaling air at 100% humidity) and sweat. Current acceptable values are based on theoretical models that rely on an "average" crew member working continuously at 75% of their aerobic capacity (Human Systems Integration Requirements Document). Evidence suggests that high intensity interval exercise for much shorter durations are equally effective or better in building and maintaining aerobic capacity. This investigation will examine sweat and respiratory rates for operationally relevant continuous and interval aerobic exercise protocols using a variety of different individuals. The results will directly inform what types of aerobic exercise countermeasures will be feasible to prescribe for crewmembers aboard the MPCV

    Stratus Ocean Reference Station (20ËšS, 85ËšW), mooring recovery and deployment cruise R/V Revelle cruise dana 03, November 10 - November 26, 2003

    Get PDF
    The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile and Peru is being maintained to provide ongoing, climate-quality records of surface meteorology, of air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station, hereafter ORS Stratus, is supported by the National Oceanic and Atmospheric Administrations (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come in October or November. During the November 2003 cruise of Scripps Institution of Oceanography's R/V Roger Revelle to the ORS Stratus site, the primary activities where the recovery of the WHOI surface mooring that had been deployed in October 2002, the deployment of a new WHOI surface mooring at that site, the in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by Chris Fairall of the NOAA Environmental Technology Laboratory (ETL), and observations of the stratus clouds and lower atmosphere by NOAA ETL and Jason Tomlinson from Texas A&M. The ORS Stratus buoys are equipped with two Improved Meteorological systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. The IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. On some deployments, additional instrumentation is attached to the mooring to measure rainfall and bio-optical variability. The ETL instrumentation used during the 2003 cruise included a cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. In addition to this work, buoy work was done in support of the Ecuadorian Navy Institute of Oceanography (INOCAR) and of the Chilean Navy Hydrographic and Oceanographic Service (SHOA). The surface buoy, oceanographic instrumentation, and upper 500 m of an INOCAR surface mooring at 2°S, 84°W that had been vandalized were recovered and transferred to the Ecuadorian Navy vessel B. A. E. Calicuchima. A tsunami warning mooring was installed at 75°W, 20°S for SHOA. SHOA personnel onboard were trained during the cruise by staff from the NOAA Pacific Marine Environmental Laboratory (PMEL) and National Data Buoy Center (NDBC). The cruise hosted two teachers participating in NOAA's Teacher at Sea Program, Deb Brice from San Marcos, California and Viviana Zamorano from Arica, Chile.Funding was provided by the National Oceanic and Atmospheric Administration uncer Contract Number NA17RJ1223

    Neuregulins mediate calcium-induced glucose transport during muscle contraction

    Full text link
    Neuregulin, a growth factor involved in myogenesis, has rapid effects on muscle metabolism. In a manner analogous to insulin and exercise, neuregulins stimulate glucose transport through recruitment of glucose transporters to surface membranes in skeletal muscle. Like muscle contraction, neuregulins have additive effects with insulin on glucose uptake. Therefore, we examined whether neuregulins are involved in the mechanism by which muscle contraction regulates glucose transport. We show that caffeine-induced increases in cytosolic Ca2+ mediate a metalloproteinase-dependent release of neuregulins, which stimulates tyrosine phosphorylation of ErbB4 receptors. Activation of ErbB4 is necessary for Ca2+-derived effects on glucose transport. Furthermore, blockage of ErbB4 abruptly impairs contraction-induced glucose uptake in slow twitch muscle fibers, and to a lesser extent, in fast twitch muscle fibers. In conclusion, we provide evidence that contraction-induced activation of neuregulin receptors is necessary for the stimulation of glucose transport and a key element of energetic metabolism during muscle contraction

    Muscle Adaptations Following Short-Duration Bed Rest with Integrated Resistance, Interval, and Aerobic Exercise

    Get PDF
    Unloading of the musculoskeletal system during space flight results in deconditioning that may impair mission-related task performance in astronauts. Exercise countermeasures have been frequently tested during bed rest (BR) and limb suspension; however, high-intensity, short-duration exercise prescriptions have not been fully explored. PURPOSE: To determine if a high intensity resistance, interval, and aerobic exercise program could protect against muscle atrophy and dysfunction when performed during short duration BR. METHODS: Nine subjects (1 female, 8 male) performed a combination of supine exercises during 2 weeks of horizontal BR. Resistance exercise (3 d / wk) consisted of squat, leg press, hamstring curl, and heel raise exercises (3 sets, 12 repetitions). Aerobic (6 d / wk) sessions alternated continuous (75% VO2 peak) and interval exercise (30 s, 2 min, and 4 min) and were completed on a supine cycle ergometer and vertical treadmill, respectively. Muscle volumes of the upper leg were calculated pre, mid, and post-BR using magnetic resonance imaging. Maximal isometric force (MIF), rate of force development (RFD), and peak power of the lower body extensors were measured twice before BR (averaged to represent pre) and once post BR. ANOVA with repeated measures and a priori planned contrasts were used to test for differences. RESULTS: There were no changes to quadriceps, hamstring, and adductor muscle volumes at mid and post BR time points compared to pre BR (Table 1). Peak power increased significantly from 1614 +/- 372 W to 1739 +/- 359 W post BR (+7.7%, p = 0.035). Neither MIF (pre: 1676 +/- 320 N vs. post: 1711 +/- 250 N, +2.1%, p = 0.333) nor RFD (pre: 7534 +/- 1265 N/ms vs. post: 6951 +/- 1241 N/ms, -7.7%, p = 0.136) were significantly impaired post BR
    • …
    corecore