94 research outputs found

    UNSWIRF: A Tunable Imaging Spectrometer for the Near-Infrared

    Get PDF
    We describe the specifications, characteristics, calibration, and analysis of data from the University of New South Wales Infrared Fabry-Perot (UNSWIRF) etalon. UNSWIRF is a near-infrared tunable imaging spectrometer, used primarily in conjunction with IRIS on the AAT, but suitable for use as a visitor instrument at other telescopes. The etalon delivers a resolving power in excess of 4000 (corresponding to a velocity resolution ~75 km/s), and allows imaging of fields up to 100" in diameter on the AAT at any wavelength between 1.5 and 2.4 microns for which suitable blocking filters are available.Comment: 16 pages, 10 figures, uses psfig.sty and html.sty (included). To appear in Publications of the Astronomical Society of Australi

    Symmetrical Drug-Related Intertriginous and Flexural Exanthema Induced by Cellulitis Prophylaxis

    Get PDF
    Penicillin VK and hydroxyzine are typically well-tolerated antipruritic agents that are indicated in the prophylaxis of cellulitis. We herein report a case of a unique rash occurring during penicillin VK and hydroxyzine treatment in combination with the ingestion of cashews. A 77-year-old male presented with new onset rash. Eleven days after the administration of penicillin VK and hydroxyzine for cellulitis prophylaxis, he developed a symmetric, erythematous, scaling rash on his buttocks and perineal region with associated pruritus and bleeding without fevers, chills, adenopathy, night sweats, or any other symptoms. He was diagnosed with symmetrical drug-related intertriginous and flexural exanthema (SDRIFE) secondary to systemic treatment, an adverse drug reaction that presents as an erythematous rash involving the skin folds. The condition is also known as “baboon syndrome,” as it predominately affects the buttocks. A good outcome was achieved due to a thorough history and physical, timely diagnosis, and cessation of the offending agents

    Coherent Captain Mills: The Search for Sterile Neutrinos

    Get PDF
    The observation of neutrino oscillations confirms that the active neutrinos (νe, νμ, ντ) are comprised of three mass eigenstates with Δm2 values between 10-3 to 10-5 eV2 . However, a persistent phenomenon has been observed at LSND, MiniBooNE and other shortbaseline experiments (SBE) where Δm2 ~ 1eV2 and is not compatible with the current mixing between mass eigenstates. However, a 4th neutrino, a sterile neutrino (νs) that doesn’t participate in weak interactions could explain the phenomena observed as SBE’s. An experiment has been constructed at TA-53 at Los Alamos National Laboratory to investigate this large Δm2 ~ 1eV2 and determine conclusively whether or not this large Δm2 is due to a “new” sterile neutrino. POSTER PRESENTATION IGNITE AWAR

    How Do Collegiate Sport Clubs Achieve Organizational Effectiveness?

    Get PDF
    A greater understanding of the organizational processes of sport clubs can inform strategies to improve clubs’ organizational effectiveness. This study examined whether sport club capacity and activities influence the organizational effectiveness of collegiate sport clubs. Sport club members (n = 201) completed a questionnaire, with secondary data collected from the university. Regression analysis found club operations, club fiscal responsibility, frequency of club practice, and frequency of competitions significantly, positively predict organizational effectiveness. Comparatively, club human capital and facility quality significantly, negatively predict organizational effectiveness. These results have implications relating to club training, mentorship, resource allocation, and club activities

    Molecular Hydrogen Line Emission from the Reflection Nebula Parsamyan 18

    Get PDF
    The newly-commissioned University of New South Wales Infrared Fabry-Perot (UNSWIRF) has been used to image molecular hydrogen emission at 2.12 and 2.25 microns in the reflection nebula Parsamyan 18. P 18 is known to exhibit low values of the (1-0)/(2-1) S(1) ratio suggestive of UV-pumped fluorescence rather than thermal excitation by shocks. Our line ratio mapping reveals the full extent of this fluorescent emission from extended arc-like features, as well as a more concentrated thermal component in regions closer to the central exciting star. We show that the emission morphology, line fluxes, and gas density are consistent with the predictions of photodissociation region (PDR) theory. Those regions with the highest intrinsic 1-0 S(1) intensities also tend to show the highest (1-0)/(2-1) S(1) line ratios. Furthermore, variations in the line ratio can be attributed to intrinsic fluctuations in the incident radiation field and/or the gas density, through the self-shielding action of H_2. An isolated knot of emission discovered just outside P 18, and having both an unusually high (1-0)/(2-1) S(1) ratio and relative velocity provides additional evidence for an outflow source associated with P 18.Comment: 8 pages, 6 figures, LaTeX, uses mn-1.4.sty. Accepted for publication in MNRA

    Unlocking the Keyhole - H2 and PAH emission from molecular clumps in the Keyhole Nebula

    Get PDF
    To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1-0 S(1) (2.122 um) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 um. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula in which the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it, and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from eta Car, are now being over-run by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around eta Car.Comment: 8 pages, 4 figures, to be published in MNRA

    Shocked molecular gas towards the SNR G359.1-0.5 and the Snake

    Get PDF
    We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR) G359.1-0.5 and the nonthermal radio filament, known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral-line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock while the H2 filament is located at the boundary between the pre--shocked and post-shock regions.Comment: 8 pages, 12 figures, accepted by the MNRAS, typos fixe

    Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS

    Get PDF
    There have been a dramatic increase in the number of optical and radio transient surveys due to astronomical transients such as gravitational waves and gamma ray bursts, however, there have been a limited number of wide-field infrared surveys due to narrow field-of-view and high cost of infrared cameras, we present two new wide-field near-infrared fully automated surveyors; Palomar Gattini-IR and the Dynamic REd All-sky Monitoring Survey (DREAMS). Palomar Gattini-IR, a 25 square degree J-band imager that begun science operations at Palomar Observatory, USA in October 2018; we report on survey strategy as well as telescope and observatory operations and will also providing initial science results. DREAMS is a 3.75 square degree wide-field imager that is planned for Siding Spring Observatory, Australia; we report on the current optical and mechanical design and plans to achieve on-sky results in 2020. DREAMS is on-track to be one of the first astronomical telescopes to use an Indium Galium Arsenide (InGaAs) detector and we report initial on-sky testing results for the selected detector package. DREAMS is also well placed to take advantage and provide near-infrared follow-up of the LSST

    Widespread Transcriptional Autosomal Dosage Compensation in Drosophila Correlates with Gene Expression Level

    Get PDF
    Little is known about dosage compensation in autosomal genes. Transcription-level compensation of deletions and other loss-of-function mutations may be a mechanism of dominance of wild-type alleles, a ubiquitous phenomenon whose nature has been a subject of a long debate. We measured gene expression in two isogenic Drosophila lines heterozygous for long deletions and compared our results with previously published gene expression data in a line heterozygous for a long duplication. We find that a majority of genes are at least partially compensated at transcription, both for ½-fold dosage (in heterozygotes for deletions) and for 1.5-fold dosage (in heterozygotes for a duplication). The degree of compensation does not vary among functional classes of genes. Compensation for deletions is stronger for highly expressed genes. In contrast, the degree of compensation for duplications is stronger for weakly expressed genes. Thus, partial transcriptional compensation appears to be based on regulatory mechanisms that insure high transcription levels of some genes and low transcription levels of other genes, instead of precise maintenance of a particular homeostatic expression level. Given the ubiquity of transcriptional compensation, dominance of wild-type alleles may be at least partially caused by of the regulation at transcription level

    Science Programs for a 2 m-class Telescope at Dome C, Antarctica: PILOT, the Pathfinder for an International Large Optical Telescope

    Full text link
    The cold, dry and stable air above the summits of the Antarctic plateau provides the best ground-based observing conditions from optical to sub-mm wavelengths to be found on the Earth. PILOT is a proposed 2 m telescope, to be built at Dome C in Antarctica, able to exploit these conditions for conducting astronomy at optical and infrared wavelengths. While PILOT is intended as a pathfinder towards the construction of future grand-design facilities, it will also be able to undertake a range of fundamental science investigations in its own right. This paper provides the performance specifications for PILOT, including its instrumentation. It then describes the kinds of science projects that it could best conduct. These range from planetary science to the search for other solar systems, from star formation within the Galaxy to the star formation history of the Universe, and from gravitational lensing caused by exo-planets to that produced by the cosmic web of dark matter. PILOT would be particularly powerful for wide-field imaging at infrared wavelengths, achieving near-diffraction limited performance with simple tip-tilt wavefront correction. PILOT would also be capable of near-diffraction limited performance in the optical wavebands, as well be able to open new wavebands for regular ground based observation; in the mid-IR from 17 to 40 microns and in the sub-mm at 200 microns.Comment: 74 pages, 14 figures, PASA, in pres
    • …
    corecore