1,047 research outputs found
An entirely analytical cosmological model
The purpose of the present study is to show that in a particular cosmological
model, with an affine equation of state, one can obtain, besides the background
given by the scale factor, Hubble and deceleration parameters, a representation
in terms of scalar fields and, more important, explicit mathematical
expressions for the density contrast and the power spectrum. Although the model
so obtained is not realistic, it reproduces features observed in some previous
numerical studies and, therefore, it may be useful in the testing of numerical
codes and as a pedagogical tool.Comment: 4 pages (revtex4), 4 figure
Robust, data-driven inference in non-linear cosmostatistics
We discuss two projects in non-linear cosmostatistics applicable to very
large surveys of galaxies. The first is a Bayesian reconstruction of galaxy
redshifts and their number density distribution from approximate, photometric
redshift data. The second focuses on cosmic voids and uses them to construct
cosmic spheres that allow reconstructing the expansion history of the Universe
using the Alcock-Paczynski test. In both cases we find that non-linearities
enable the methods or enhance the results: non-linear gravitational evolution
creates voids and our photo-z reconstruction works best in the highest density
(and hence most non-linear) portions of our simulations.Comment: 14 pages, 10 figures. Talk given at "Statistical Challenges in Modern
Astronomy V," held at Penn Stat
The Dependence of Galaxy Shape on Luminosity and Surface Brightness Profile
For a sample of 96,951 galaxies from the Sloan Digital Sky Survey Data
Release 3, we study the distribution of apparent axis ratios as a function of
r-band absolute magnitude and surface brightness profile type. We use the
parameter fracDeV to quantify the profile type (fracDeV = 1 for a de
Vaucouleurs profile; fracDeV = 0 for an exponential profile). When the apparent
axis ratio q_{am} is estimated from the moments of the light distribution, the
roundest galaxies are very bright (M_r \sim -23) de Vaucouleurs galaxies and
the flattest are modestly bright (M_r \sim -18) exponential galaxies. When the
apparent axis ratio q_{25} is estimated from the axis ratio of the 25
mag/arcsec^2 isophote, we find that de Vaucouleurs galaxies are flatter than
exponential galaxies of the same absolute magnitude. For a given surface
brightness profile type, very bright galaxies are rounder, on average, than
fainter galaxies. We deconvolve the distributions of apparent axis ratios to
find the distribution of the intrinsic short-to-long axis ratio gamma, assuming
constant triaxiality T. For all profile types and luminosities, the
distribution of apparent axis ratios is inconsistent with a population of
oblate spheroids, but is usually consistent with a population of prolate
spheroids. Bright galaxies with a de Vaucouleurs profile (M_r < -21.84, fracDeV
> 0.9) have a distribution of q_{am} that is consistent with triaxiality in the
range 0.4 < T < 0.8, with mean intrinsic axis ratio 0.66 < gamma < 0.69. The
fainter de Vaucouleurs galaxies are best fit with prolate spheroids (T = 1)
with mean axis ratio gamma = 0.51.Comment: 32 pages, 12 figures, to appear in Ap
The Ellipticity of the Disks of Spiral Galaxies
The disks of spiral galaxies are generally elliptical rather than circular.
The distribution of ellipticities can be fit with a log-normal distribution.
For a sample of 12,764 galaxies from the Sloan Digital Sky Survey Data Release
1 (SDSS DR1), the distribution of apparent axis ratios in the i band is best
fit by a log-normal distribution of intrinsic ellipticities with ln epsilon =
-1.85 +/- 0.89. For a sample of nearly face-on spiral galaxies, analyzed by
Andersen and Bershady using both photometric and spectroscopic data, the best
fitting distribution of ellipticities has ln epsilon = -2.29 +/- 1.04. Given
the small size of the Andersen-Bershady sample, the two distribution are not
necessarily inconsistent. If the ellipticity of the potential were equal to
that of the light distribution of the SDSS DR1 galaxies, it would produce 1.0
magnitudes of scatter in the Tully-Fisher relation, greater than is observed.
The Andersen-Bershady results, however, are consistent with a scatter as small
as 0.25 magnitudes in the Tully-Fisher relation.Comment: 19 pages, 5 figures; ApJ, accepte
Development of a preliminary conceptual model of the patient experience of chronic kidney disease: a targeted literature review and analysis
BackgroundPatient-reported outcome (PRO) instruments should capture the experiences of disease and treatment that patients consider most important in order to inform patient-centred care and product development. The aim of this study was to develop a preliminary conceptual model of patient experience in chronic kidney disease (CKD) based on a targeted literature review and to characterize existing PRO instruments used in CKD.MethodsPubMed, EMBASE and Cochrane databases and recent society meetings were searched for publications reporting signs/symptoms and life impacts of CKD. Concepts identified in the literature review were used to develop a preliminary conceptual model of patient experience of CKD, overall, and within patient subpopulations of differing CKD causes, severities and complications. PRO instruments, identified from PRO databases, CKD literature and CKD clinical trials, were assessed for content validity, psychometric strength and coverage of concepts in the literature review.ResultsIn total, 100 publications met criteria for analysis; 56 signs/symptoms and 37 life impacts of CKD were identified from these sources. The most frequently mentioned signs/symptoms were pain/discomfort (57% of publications) and tiredness/low energy/lethargy/fatigue (42%); the most commonly reported life impacts were anxiety/depression (49%) and decrements in physical functioning (43%). Signs/symptoms and life impacts varied across the subpopulations and were more frequent at advanced CKD stages. The preliminary conceptual model grouped signs/symptoms into seven domains (pain/discomfort; energy/fatigue; sleep-related; gastrointestinal-related; urinary-related; skin-/hair-/nails-related; and other) and life impacts into six domains (psychological/emotional strain; cognitive impairment; dietary habit disruption; physical function decrements; interference with social relationships; and other). Eleven PRO instruments were considered to be promising for use in CKD; all had limitations.ConclusionsAlthough preliminary, the proposed conceptual model highlights key PROs for people with CKD and is intended to spur development of more tailored PRO instruments to assess these concepts
Loss of halo triaxiality due to bar formation
Cosmological N-body simulations indicate that the dark matter haloes of
galaxies should be generally triaxial. Yet, the presence of a baryonic disc is
believed to alter the shape of the haloes. Here we aim to study how bar
formation is affected by halo triaxiality and how, in turn, the presence of the
bar influences the shape of the halo. We perform a set of collisionless N-body
simulations of disc galaxies with triaxial dark matter haloes, using elliptical
discs as initial conditions. We study models of different halo triaxialities
and, to investigate the behaviour of the halo shape in the absence of bar
formation, we run models with different disc masses, halo concentrations, disc
velocity dispersions and also models where the disc shape is kept artificially
axisymmetric. We find that the introduction of a massive disc causes the halo
triaxiality to be partially diluted. Once the disc is fully grown, a strong
stellar bar develops within the halo that is still non-axisymmetric, causing it
to lose its remaining non-axisymmetry. In triaxial haloes in which the initial
conditions are such that a bar does not form, the halo is able to remain
triaxial and the circularisation of its shape on the plane of the disc is
limited to the period of disc growth. We conclude that part of the
circularisation of the halo is due to disc growth, but part must be attributed
to the formation of a bar. We find that initially circular discs respond
excessively to the triaxial potential and become highly elongated. They also
lose more angular momentum than the initially elliptical discs and thus form
stronger bars. Because of that, the circularisation that their bars induce on
their haloes is also more rapid. We also analyse halo vertical shapes and
observe that their vertical flattenings remain considerable, meaning that the
haloes become approximately oblate by the end of the simulations. [abridged]Comment: 20 pages, 26 figures, accepted for publication in MNRA
Structural properties of disk galaxies. II. Intrinsic shape of bulges
(Abridged) The structural parameters of a magnitude-limited sample of 148
unbarred S0-Sb galaxies were analyzed to derive the intrinsic shape of their
bulges. We developed a new method to derive the intrinsic shape of bulges based
on the geometrical relationships between the apparent and intrinsic shapes of
bulges and disks. The equatorial ellipticity and intrinsic flattening of bulges
were obtained from the length of the apparent major and minor semi-axes of the
bulge, twist angle between the apparent major axis of the bulge and the galaxy
line of nodes, and galaxy inclination. We found that the intrinsic shape is
well constrained for a subsample of 115 bulges with favorable viewing angles. A
large fraction of them is characterized by an elliptical section (B/A<0.9).
This fraction is 33%, 55%, and 43% if using their maximum, mean, or median
equatorial ellipticity, respectively. Most are flattened along their polar axis
(C<(A+B)/2). The distribution of triaxiality is strongly bimodal. This
bimodality is driven by bulges with Sersic index n>2, or equivalently, by the
bulges of galaxies with a bulge-to-total ratio B/T>0.3. In particular, bulges
with n\leq2 and with B/T\leq0.3 show a larger fraction of oblate axisymmetric
(or nearly axisymmetric) bulges, a smaller fraction of triaxial bulges, and
fewer prolate axisymmetric (or nearly axisymmetric) bulges with respect to
bulges with n>2 and with B/T>0.3, respectively. According to predictions of the
numerical simulations of bulge formation, bulges with n\leq2, which show a high
fraction of oblate axisymmetric (or nearly axisymmetric) shapes and have
B/T\leq0.3, could be the result of dissipational minor mergers. Both major
dissipational and dissipationless mergers seem to be required to explain the
variety of shapes found for bulges with n>2 and B/T>0.3.Comment: 16 pages, 12 figures; accepted for publication in A&
Recovering the intrinsic shape of early-type galaxies
We investigate how well the intrinsic shape of early-type galaxies can be
recovered when both photometric and two-dimensional stellar kinematic
observations are available. We simulate these observations with galaxy models
that are representative of observed oblate fast-rotator to triaxial
slow-rotator early-type galaxies. By fitting realistic triaxial dynamical
models to these simulated observations, we recover the intrinsic shape (and
mass-to-light ratio), without making additional (ad-hoc) assumptions on the
orientation.
For (near) axisymmetric galaxies the dynamical modelling can strongly exclude
triaxiality, but the regular kinematics do not further tighten the constraint
on the intrinsic flattening significantly, so that the inclination is nearly
unconstrained above the photometric lower limit even with two-dimensional
stellar kinematics. Triaxial galaxies can have additional complexity in both
the observed photometry and kinematics, such as twists and (central)
kinematically decoupled components, which allows the intrinsic shape to be
accurately recovered. For galaxies that are very round or show no significant
rotation, recovery of the shape is degenerate, unless additional constraints
such as from a thin disk are available.Comment: 12 pages, 7 figures, PDFLaTeX, accepted to MNRAS, minor revision
Domain Wall Junctions are 1/4-BPS States
We study N=1 SUSY theories in four dimensions with multiple discrete vacua,
which admit solitonic solutions describing segments of domain walls meeting at
one-dimensional junctions. We show that there exist solutions preserving one
quarter of the underlying supersymmetry -- a single Hermitian supercharge. We
derive a BPS bound for the masses of these solutions and construct a solution
explicitly in a special case. The relevance to the confining phase of N=1 SUSY
Yang-Mills and the M-theory/SYM relationship is discussed.Comment: 18 pages, 4 figures, uses RevTeX. Brief comments concerning lattices
of junctions added. Version to appear in Phys. Rev.
- …