86 research outputs found

    Energy Cost of Active and Sedentary Music Video Games: Handheld Gaming vs. Walking and Sitting

    Get PDF
    International Journal of Exercise Science 10(7): 1038-1050, 2017. To compare energy expenditure during and after active and handheld video game drumming compared to walking and sitting. Ten experienced, college-aged men performed four protocols (one per week): no-exercise seated control (CTRL), virtual drumming on a handheld gaming device (HANDHELD), active drumming on drum pads (DRUM), and walking on a treadmill at ~30% of VO2max (WALK). Protocols were performed after an overnight fast, and expired air was collected continuously during (30min) and after (30min) exercise. DRUM and HANDHELD song lists, day of the week, and time of day were identical for each participant. Significant differences (p \u3c 0.05) among the average rates of energy expenditure (kcal.min-1) during activity included WALK \u3e DRUM \u3e HANDHELD. No significant differences in the rates of energy expenditure among groups during recovery were observed. Total energy expenditure was significantly greater (p \u3c 0.05) during WALK (149.5 ± 30.6 kcal) compared to DRUM (118.7 ± 18.8 kcal) and HANDHELD (44.9±11.6 kcal), and greater during DRUM compared to HANDHELD. Total energy expenditure was not significantly different between HANDHELD (44.9 ± 11.6 kcal) and CTRL (38.2 ± 6.0 kcal). Active video game drumming at expert-level significantly increased energy expenditure compared to handheld, but it hardly met moderate-intensity activity standards, and energy expenditure was greatest during walking. Energy expenditure with handheld video game drumming was not different from no-exercise control. Thus, traditional aerobic exercise remains at the forefront for achieving the minimum amount and intensity of physical activity for health, individuals desiring to use video games for achieving weekly physical activity recommendations should choose games that require significant involvement of lower-body musculature, and time spent playing sedentary games should be a limited part of an active lifestyle

    Environmental organochlorines and semen quality: results of a pilot study.

    Get PDF
    There have been numerous studies that suggest that sperm concentrations (sperm counts) are declining in men. However, other studies suggest that sperm counts are not declining or may be increasing in some areas. Although there is disagreement on whether there is a downward temporal trend in sperm counts, the studies provide evidence that sperm counts vary by geographic location. It has been hypothesized that the geographic variation in sperm concentrations may be due to environmental exposures, lifestyle factors, or some unknown causes. To determine whether contemporary ambient levels of polychlorinated biphenyls (PCBs) and p,p-DDE are associated with altered semen quantity and quality, we selected a study population without specific exposure to PCBs or p,p-DDE. The present study presents the results from a pilot study on the relationship between serum PCBs and p,p-DDE and semen quality in 29 subjects recruited from the Massachusetts General Hospital Andrology Laboratory. Of the 29 subjects, 3 had sperm concentrations < 20 million/mL, 7 had < 50% motile sperm, 9 had < 4% normal morphology, and 6 were below normal in more than one semen parameter. The 18 subjects with normal spermatozoa concentration, motility, and morphology were used as comparison subjects. The mean (SE) concentration of the sum of PCBs and p,p-DDE was 242 ng/g lipids (34.0) and 354 ng/g lipids (120), respectively, for men with below normal motility as compared to 202 ng/g lipids (16.6) and 240 ng/g lipids (31.1), respectively, for the comparison subjects. The data showed general trends that were suggestive of an association between PCBs and p,p-DDE and abnormal motility, as well as with sperm concentration and morphology. A full-scale study is currently in progress

    Bone resorption is affected by follicular phase length in female rotating shift workers.

    Get PDF
    Stressors as subtle as night work or shift work can lead to irregular menstrual cycles, and changes in reproductive hormone profiles can adversely affect bone health. This study was conducted to determine if stresses associated with the disruption of regular work schedule can induce alterations in ovarian function which, in turn, are associated with transient bone resorption. Urine samples from 12 rotating shift workers from a textile mill in Anqing, China, were collected in 1996-1998 during pairs of sequential menstrual cycles, of which one was longer than the other (28.4 vs. 37.4 days). Longer cycles were characterized by a prolonged follicular phase. Work schedules during the luteal-follicular phase transition (LFPT) preceding each of the two cycles were evaluated. All but one of the shorter cycles were associated with regular, forward phase work shift progression during the preceding LFPT. In contrast, five longer cycles were preceded by a work shift interrupted either by an irregular shift or a number of "off days." Urinary follicle-stimulating hormone levels were reduced in the LFPT preceding longer cycles compared with those in the LFPT preceding shorter cycles. There was greater bone resorption in the follicular phase of longer cycles than in that of shorter cycles, as measured by urinary deoxypyridinoline. These data confirm reports that changes in work shift can lead to irregularity in menstrual cycle length. In addition, these data indicate that there may be an association between accelerated bone resorption in menstrual cycles and changes of regularity in work schedule during the preceding LFPT

    Effect of Environmental Tobacco Smoke on Levels of Urinary Hormone Markers

    Get PDF
    Our recent study showed a dose–response relationship between environmental tobacco smoke (ETS) and the risk of early pregnancy loss. Smoking is known to affect female reproductive hormones. We explored whether ETS affects reproductive hormone profiles as characterized by urinary pregnanediol-3-glucuronide (PdG) and estrone conjugate (E(1)C) levels. We prospectively studied 371 healthy newly married nonsmoking women in China who intended to conceive and had stopped contraception. Daily records of vaginal bleeding, active and passive cigarette smoking, and daily first-morning urine specimens were collected for up to 1 year or until a clinical pregnancy was achieved. We determined the day of ovulation for each menstrual cycle. The effects of ETS exposure on daily urinary PdG and E(1)C levels in a ±10 day window around the day of ovulation were analyzed for conception and nonconception cycles, respectively. Our analysis included 344 nonconception cycles and 329 conception cycles. In nonconception cycles, cycles with ETS exposure had significantly lower urinary E(1)C levels (β= –0.43, SE = 0.08, p < 0.001 in log scale) compared with the cycles without ETS exposure. There was no significant difference in urinary PdG levels in cycles having ETS exposure (β= –0.07, SE = 0.15, p = 0.637 in log scale) compared with no ETS exposure. Among conception cycles, there were no significant differences in E(1)C and PdG levels between ETS exposure and nonexposure. In conclusion, ETS exposure was associated with significantly lower urinary E(1)C levels among nonconception cycles, suggesting that the adverse reproductive effect of ETS may act partly through its antiestrogen effects

    Direct Measurements of Meltwater Runoff on the Greenland Ice Sheet Surface

    Get PDF
    Meltwater runoff from the Greenland Ice Sheet surface influences surface mass balance (SMB), ice dynamics and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-hour trial for a 63.1 square kilometer moulin-terminating internally drained catchment (IDC) on Greenland's mid-elevation (1207-1381 meters above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6.1 (Modele Atmospherique Regionale 3.6.1), RACMO2.3 (Regional Atmospheric Climate Model 2.3), MERRA-2 (Modern Era Retrospective-analysis for Research and Applications-2) and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins, but are improved using synthetic unit hydrograph theory (SUH). Retroactive SUH applications to two older field studies reproduces their findings, signifying that remotely sensed IDC area, shape, and river-length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6.1, RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment models overestimated runoff by plus 21 percent to plus 58 percent, linked to overestimated ablation and possible meltwater retention in bare, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of surface mass balance with ice dynamics and subglacial systems

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    New proglacial meteorology and river stage observations from Inglefield Land and Pituffik, NW Greenland

    Get PDF
    Meltwater runoff from the Greenland ice sheet (GrIS) is an important contributor to global sea level rise, but substantial uncertainty exists in its measurement and prediction. Common approaches for estimating ice sheet runoff are in situ gauging of proglacial rivers draining the ice sheet and surface mass balance (SMB) modeling. To obtain hydrological and meteorological data sets suitable for both runoff stage characterization and, pending the establishment of stage–discharge curves, SMB model evaluation, we established an automated weather station (AWS) and a cluster of traditional and experimental river stage sensors on the Minturn River, the largest proglacial river draining Inglefield Land, NW Greenland. Secondary installations measuring river stage were installed in the Fox Canyon River and North River at Pituffik Space Base, NW Greenland. Proglacial runoff at these sites is dominated by supraglacial processes only, uniquely advantaging them for SMB studies. The three installations provide rare hydrological time series and an opportunity to evaluate experimental measurements of river stage from a harsh, little-studied polar region. The installed instruments include submerged vented and non-vented pressure transducers, a bubbler sensor, experimental bank-mounted laser rangefinders, and time-lapse cameras. The first 3 years of observations (2019 to 2021) from these stations indicate (a) a meltwater runoff season from late June to late August/early September that is roughly synchronous throughout the region; (b) the early onset (∼ 23 June to 8 July) of a strong diurnal runoff signal in 2019 and 2020, suggesting minimal meltwater storage in snow and/or firn; (c) 1 d lagged air temperature that displays the strongest correlation with river stage; (d) river stage that correlates more strongly with ablation zone albedo than with net radiation; and (e) the late-summer rain-on-ice events appear to trigger the region's sharpest and largest floods. The new gauging stations provide valuable in situ hydrological observations that are freely available through the PROMICE network (https://promice.org/weather-stations/, last access: 14 September 2023).</p

    Coping With the Experiences of Intimate Partner Violence Among South African Women: Systematic Review and Meta-Synthesis

    Get PDF
    Background: Intimate partner violence (IPV) continues to be a serious problem worldwide. South Africa has a high prevalence of women experiencing IPV. Although much research reports on the prevalence rates, risk factors, and consequences of IPV, fewer studies report on how women deal with the experiences of IPV. Objective: This systematic review of the empirical literature aimed to identify and synthesize the best available evidence on women’s experiences of coping with IPV in South Africa. Methods: A four-level search and retrieval strategy using PRISMA and JBI guidelines was conducted, which included critical appraisal, study selection, data extraction, and data synthesis. Ten studies met the eligibility criteria and were included in the review. They were assessed to meet a set threshold (7/10) based on the JBI Critical Appraisal Checklist for Qualitative Research. All studies were conducted between 2010 and 2020, conducted in South Africa, and used qualitative methodologies to accomplish the overall aim of investigating IPV experiences of women and their responses to it. Results: The total number of women included in the studies was 159. The data extraction yielded 49 findings of which 47 were aggregated into 14 categories and three themes: (1) help- and support-seeking coping, (2) emotional regulation coping, and (3) problem avoidance and distraction coping. Help- and support-seeking coping refers to women’s responses when they seek instrumental aid, advice, comfort, and/or understanding from others. Emotional regulation includes responses of women in which their emotions were expressed or regulated. Problem avoidance and distraction coping represent responses of women in which they take efforts to avoid thinking about the problem situation and rather reshift their focus. Conclusion: Overall, this review found that a variety of coping responses are used by South African women experiencing IPV. The findings point to the need for understanding IPV and responses to it within a broader social context rather than just at the persona
    corecore