20 research outputs found

    Analysis of Virtual Versus In-Person Prospective Peer Review Workflow in a Multisite Academic Radiation Oncology Department

    Get PDF
    Purpose In radiation oncology, peer review is a process where subjective treatment planning decisions are assessed by those independent of the prescribing physician. Before March 2020, all peer review sessions occurred in person; however due to the COVID-19 pandemic, the peer-review workflow was transitioned from in-person to virtual. We sought to assess any differences between virtual versus in-person prospective peer review. Methods and Materials Patients scheduled to receive nonemergent nonprocedural radiation therapy (RT) were presented daily at prospective peer-review before the start of RT administration. Planning software was used, with critical evaluation of several variables including treatment intent, contour definition, treatment target coverage, and risk to critical structures. A deviation was defined as any suggested plan revision. Results In the study, 274 treatment plans evaluated in-person in 2017 to 2018 were compared with 195 plans evaluated virtually in 2021. There were significant differences in palliative intent (36% vs 22%; P = .002), but not in total time between simulation and the start of treatment (9.2 vs 10.0 days; P = .10). Overall deviations (8.0% in-person vs 2.6% virtual; P = .015) were significantly reduced in virtual peer review. Conclusions Prospective daily peer review of radiation oncology treatment plans can be performed virtually with similar timeliness of patient care compared with in-person peer review. A decrease in deviation rate in the virtual peer review setting will need to be further investigated to determine whether virtual workflow can be considered a standard of care

    Surface Localization of Glucosylceramide during Cryptococcus neoformans Infection Allows Targeting as a Potential Antifungal

    Get PDF
    Cryptococcus neoformans (Cn) is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1) was deleted in Cn, resulting in a strain (Δgcs1) that does not produce glucosylceramide (GlcCer) and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO2). These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz), a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics

    Dose to level I and II axillary lymph nodes and lung by tangential field radiation in patients undergoing postmastectomy radiation with tissue expander reconstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To define the dosimetric coverage of level I/II axillary volumes and the lung volume irradiated in postmastectomy radiotherapy (PMRT) following tissue expander placement.</p> <p>Methods and Materials</p> <p>Twenty-three patients were identified who had undergone postmastectomy radiotherapy with tangent only fields. All patients had pre-radiation tissue expander placement and expansion. Thirteen patients had bilateral expander reconstruction. The level I/II axillary volumes were contoured using the RTOG contouring atlas. The patient-specific variables of expander volume, superior-to-inferior location of expander, distance between expanders, expander angle and axillary volume were analyzed to determine their relationship to the axillary volume and lung volume dose.</p> <p>Results</p> <p>The mean coverage of the level I/II axillary volume by the 95% isodose line (V<sub>D95%</sub>) was 23.9% (range 0.3 - 65.4%). The mean Ipsilateral Lung V<sub>D50% </sub>was 8.8% (2.2-20.9). Ipsilateral and contralateral expander volume correlated to Axillary V<sub>D95% </sub>in patients with bilateral reconstruction (p = 0.01 and 0.006, respectively) but not those with ipsilateral only reconstruction (p = 0.60). Ipsilateral Lung V<sub>D50% </sub>correlated with angle of the expander from midline (p = 0.05).</p> <p>Conclusions</p> <p>In patients undergoing PMRT with tissue expanders, incidental doses delivered by tangents to the axilla, as defined by the RTOG contouring atlas, do not provide adequate coverage. The posterior-superior region of level I and II is the region most commonly underdosed. Axillary volume coverage increased with increasing expander volumes in patients with bilateral reconstruction. Lung dose increased with increasing expander angle from midline. This information should be considered both when placing expanders and when designing PMRT tangent only treatment plans by contouring and targeting the axilla volume when axillary treatment is indicated.</p

    Radiation oncology crossword: breast cancer

    Full text link

    Long-term outcomes of acromegaly treated with fractionated stereotactic radiation: case series and literature review

    Full text link
    Abstract Background Growth hormone (GH)-secreting pituitary adenomas represent an uncommon subset of pituitary neoplasms. Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) have been used as primary or adjuvant treatment. The purpose of this study is to report the long-term tumor control and toxicity from our institution and to perform a systematic literature review of acromegaly patients treated with FSRT. Methods We retrospectively reviewed all patients treated with FSRT (median dose 50.4 Gray [Gy], range 50.4–54 Gy) between 2005 and 2012 who had: 1) GH-secreting adenoma with persistently elevated insulin growth factor-1 (IGF-1) despite medical therapy and 2) clinical follow up &gt;3 years after FSRT. Patients were treated with modern FSRT planning techniques. Biochemical control was defined as IGF-1 normalization. Systematic review of the literature was performed for FSRT in acromegaly. Results With a median follow-up of 80 months, radiographic control was achieved in all 11 patients and overall survival was 100%. Long-term biochemical control was achieved in 10 patients (90.9%) with either FSRT alone (36.4%) or FSRT with continued medical management (45.5%). No patient experienced new hypopituitarism, cranial nerve dysfunctions, or visual deficits. Our systematic review found published rates of biochemical control and hypopituitarism vary, with uniformly good radiographic control and low incidence of visual changes. Conclusions Adjuvant FSRT offered effective long-term biochemical control and radiographic control, and there was a lower rate of complications in this current series. Review of the literature shows variations in published rates of biochemical control after FSRT for acromegaly, but low incidence of serious toxicities. </jats:sec

    Discovery of increased number or interval growth of brain metastases on same-day GammaKnife™ planning MRI: Predicting factors and patient outcomes

    No full text
    Purpose: To determine factors associated with increased risk of finding new and/or enlarged brain metastases (BM) on GammaKnife™ (GK) MRI and their impact on patient outcomes. Results: 43.9% of patients showed BM growth, 32.9% had additional brain metastases (aBM), and 18.1 % had both. Initial brain metastasis velocity (iBMV) was associated with finding aBM. Time between diagnostic MRI (dMRI) and GK MRI was associated with interval growth and each day increased this risk by 2%. Prior brain metastasectomy and greater time between either dMRI or latest extracranial RT and GK MRI predicted both aBM and BM growth. aBM and/or BM growth led to management change in 1.8% of cases and were not associated with OS or incidence of distant intracranial failure. Conclusions: Number of metastases seen on dMRI and iBMV predicted both aBM and/or BM growth, however, these factors did not significantly affect survival or incidence of distant intracranial failure

    Discovery of increased number or interval growth of brain metastases on same-day GammaKnife™ planning MRI: Predicting factors and patient outcomes

    No full text
    Purpose: To determine factors associated with increased risk of finding new and/or enlarged brain metastases (BM) on GammaKnife™ (GK) MRI and their impact on patient outcomes. Results: 43.9% of patients showed BM growth, 32.9% had additional brain metastases (aBM), and 18.1 % had both. Initial brain metastasis velocity (iBMV) was associated with finding aBM. Time between diagnostic MRI (dMRI) and GK MRI was associated with interval growth and each day increased this risk by 2%. Prior brain metastasectomy and greater time between either dMRI or latest extracranial RT and GK MRI predicted both aBM and BM growth. aBM and/or BM growth led to management change in 1.8% of cases and were not associated with OS or incidence of distant intracranial failure. Conclusions: Number of metastases seen on dMRI and iBMV predicted both aBM and/or BM growth, however, these factors did not significantly affect survival or incidence of distant intracranial failure

    Patient characteristics and clinical factors affecting lumpectomy cavity volume: implications for partial breast irradiation

    No full text
    Introduction: Partial breast irradiation (PBI) has increased in utilization, with the postoperative lumpectomy cavity and clips used to guide target volumes. The ideal timing to perform computed tomography (CT)-based treatment planning for this technique is unclear. Prior studies have examined change in volume over time from surgery but not the effect of patient characteristics on lumpectomy cavity volume. We sought to investigate patient and clinical factors that may contribute to larger postsurgical lumpectomy cavities and therefore predict for larger PBI volumes. Methods: A total of 351 consecutive women with invasive or in situ breast cancer underwent planning CT after breast-conserving surgery at a single institution during 2019 and 2020. Lumpectomy cavities were contoured, and volume was retrospectively computed using the treatment planning system. Univariate and multivariate analyses were performed to evaluate the associations between lumpectomy cavity volume and patient and clinical factors. Results: Median age was 61.0 years (range, 30-91), 23.9% of patients were Black people, 52.1% had hypertension, the median body mass index (BMI) was 30.4 kg/m², 11.4% received neoadjuvant chemotherapy, 32.5% were treated prone, mean interval from surgery to CT simulation was 54.1 days ± 45.9, and mean lumpectomy cavity volume was 42.2 cm3 ± 52.0. Longer interval from surgery was significantly associated with smaller lumpectomy cavity volume on univariate analysis, p = 0.048. Race, hypertension, BMI, the receipt of neoadjuvant chemotherapy, and prone position remained significant on multivariate analysis (p < 0.05 for all). Prone position vs. supine, higher BMI, the receipt of neoadjuvant chemotherapy, the presence of hypertension, and race (Black people vs. White people) were associated with larger mean lumpectomy cavity volume. Discussion: These data may be used to select patients for which longer time to simulation may result in smaller lumpectomy cavity volumes and therefore smaller PBI target volumes. Racial disparity in cavity size is not explained by known confounders and may reflect unmeasured systemic determinants of health. Larger datasets and prospective evaluation would be ideal to confirm these hypotheses
    corecore