41,733 research outputs found
System dynamics and simulation of LSS
Large Space Structures have many unique problems arising from mission objectives and the resulting configuration. Inherent in these configurations is a strong coupling among several of the designing disciplines. In particular, the coupling between structural dynamics and control is a key design consideration. The solution to these interactive problems requires efficient and accurate analysis, simulation and test techniques, and properly planned and conducted design trade studies. The discussion presented deals with these subjects and concludes with a brief look at some NASA capabilities which can support these technology studies
Stochastic Satbility and Performance Robustness of Linear Multivariable Systems
Stochastic robustness, a simple technique used to estimate the robustness of linear, time invariant systems, is applied to a single-link robot arm control system. Concepts behind stochastic stability robustness are extended to systems with estimators and to stochastic performance robustness. Stochastic performance robustness measures based on classical design specifications are introduced, and the relationship between stochastic robustness measures and control system design parameters are discussed. The application of stochastic performance robustness, and the relationship between performance objectives and design parameters are demonstrated by means of example. The results prove stochastic robustness to be a good overall robustness analysis method that can relate robustness characteristics to control system design parameters
Mechanisms of sensorineural cell damage, death and survival in the cochlea.
The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss (ARHL). Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed
Decay Phase Cooling and Inferred Heating of M- and X-class Solar Flares
In this paper, the cooling of 72 M- and X-class flares is examined using
GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the
observed total cooling times are compared to the predictions of an analytical
0-D hydrodynamic model. It is found that the model does not fit the
observations well, but does provide a well defined lower limit on a flare's
total cooling time. The discrepancy between observations and the model is then
assumed to be primarily due to heating during the decay phase. The decay phase
heating necessary to account for the discrepancy is quantified and found be
~50% of the total thermally radiated energy as calculated with GOES. This decay
phase heating is found to scale with the observed peak thermal energy. It is
predicted that approximating the total thermal energy from the peak is
minimally affected by the decay phase heating in small flares. However, in the
most energetic flares the decay phase heating inferred from the model can be
several times greater than the peak thermal energy.Comment: Published in the Astrophysical Journal, 201
The halo masses and galaxy environments of hyperluminous QSOs at z~2.7 in the Keck Baryonic Structure Survey
We present an analysis of the galaxy distribution surrounding 15 of the most
luminous (>10^{14} L_sun; M_1450 ~ -30) QSOs in the sky with z~2.7. Our data
are drawn from the Keck Baryonic Structure Survey (KBSS). In this work, we use
the positions and spectroscopic redshifts of 1558 galaxies that lie within ~3',
(4.2 h^{-1} comoving Mpc; cMpc) of the hyperluminous QSO (HLQSO) sightline in
one of 15 independent survey fields, together with new measurements of the
HLQSO systemic redshifts. We measure the galaxy-HLQSO cross-correlation
function, the galaxy-galaxy autocorrelation function, and the characteristic
scale of galaxy overdensities surrounding the sites of exceedingly rare,
extremely rapid, black hole accretion. On average, the HLQSOs lie within
significant galaxy overdensities, characterized by a velocity dispersion
sigma_v ~ 200 km s^{-1} and a transverse angular scale of ~25", (~200 physical
kpc). We argue that such scales are expected for small groups with
log(M_h/M_sun)~13. The galaxy-HLQSO cross-correlation function has a best-fit
correlation length r_0_GQ = (7.3 \pm 1.3) h^{-1} cMpc, while the galaxy
autocorrelation measured from the spectroscopic galaxy sample in the same
fields has r_0_GG = (6.0 \pm 0.5) h^{-1} cMpc. Based on a comparison with
simulations evaluated at z ~ 2.6, these values imply that a typical galaxy
lives in a host halo with log(M_h/M_sun) = 11.9\pm0.1, while HLQSOs inhabit
host halos of log(M_h/M_sun) = 12.3\pm0.5. In spite of the extremely large
black hole masses implied by their observed luminosities [log(M_BH/M_sun) >
9.7], it appears that HLQSOs do not require environments very different from
their much less luminous QSO counterparts. Evidently, the exceedingly low space
density of HLQSOs (< 10^{-9} cMpc^{-3}) results from a one-in-a-million event
on scales << 1 Mpc, and not from being hosted by rare dark matter halos.Comment: 15 pages, 6 figures. Accepted for publication in Ap
Syndromic and Point-of-Care Molecular Testing
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic
- …