13 research outputs found

    Keeping Data Science Broad: Negotiating the Digital and Data Divide Among Higher Education Institutions

    Get PDF
    The goal of the “Keeping Data Science Broad” series of webinars and workshops was to garner community input into pathways for keeping data science education broadly inclusive across sectors, institutions, and populations. Input was collected from data science programs across the nation, either traditional or alternative, and from a range of institution types including community colleges, minority-led and minority-serving institutions, liberal arts colleges, tribal colleges, universities, and industry partners. The series consisted of two webinars (August 2017 and September 2017) leading up to a workshop (November 2017) exploring the future of data science education and workforce at institutions of higher learning that are primarily teaching-focused. A third follow-up webinar was held after the workshop (January 2018) to report on outcomes and next steps. Program committee members were chosen to represent a broad spectrum of communities with a diversity of geography (West, Northeast, Midwest, and South), discipline (Computer Science, Math, Statistics, and Domains), as well as institution type (Historically Black Colleges and Universities (HBCU’s), Hispanic-Serving Institutions (HSI’s), other Minority-Serving Institutions (MSI\u27s), Community College\u27s (CC’s), 4-year colleges, Tribal Colleges, R1 Universities, Government and Industry Partners)

    Keeping Data Science Broad: Negotiating the Digital and Data Divide Among Higher Education Institutions

    Get PDF
    The goal of the “Keeping Data Science Broad” series of webinars and workshops was to garner community input into pathways for keeping data science education broadly inclusive across sectors, institutions, and populations. Input was collected from data science programs across the nation, either traditional or alternative, and from a range of institution types including community colleges, minority-led and minority-serving institutions, liberal arts colleges, tribal colleges, universities, and industry partners. The series consisted of two webinars (August 2017 and September 2017) leading up to a workshop (November 2017) exploring the future of data science education and workforce at institutions of higher learning that are primarily teaching-focused. A third follow-up webinar was held after the workshop (January 2018) to report on outcomes and next steps. Program committee members were chosen to represent a broad spectrum of communities with a diversity of geography (West, Northeast, Midwest, and South), discipline (Computer Science, Math, Statistics, and Domains), as well as institution type (Historically Black Colleges and Universities (HBCU’s), Hispanic-Serving Institutions (HSI’s), other Minority-Serving Institutions (MSI\u27s), Community College\u27s (CC’s), 4-year colleges, Tribal Colleges, R1 Universities, Government and Industry Partners)

    Semi-Supervised Learning Using Randomized Mincuts

    No full text
    In many application domains there is a large amount of unlabeled data but only a very limited amount of labeled training data. One general approach that has been explored for utilizing this unlabeled data is to construct a graph on all the data points based on distance relationships among examples, and then to use the known labels to perform some type of graph partitioning

    A random-surfer web-graph model

    No full text
    In this paper we provide theoretical and experimental results on a random-surfer model for construction of a random graph. In this model, a new node connects to the existing graph by choosing a start node uniformly at random and then performing a short random walk. We show that in certain formulations, this results in the same distribution as the preferential-attachment random-graph model, and in others we give a direct analysis of power-law distribution of degrees or “virtual degrees ” of the resulting graphs. We also present experimental results for a number of settings of parameters that we are not able to analyze mathematically.

    Mono-isotope prediction for mass spectra using Bayes network

    No full text

    Accurate identification of mass peaks for tandem mass spectra using MCMC model

    No full text
    corecore