7 research outputs found
Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data
The brain systems underlying placebo analgesia are insufficiently understood. Here we performed a systematic, participant-level meta-analysis of experimental functional neuroimaging studies of evoked pain under stimulus-intensity-matched placebo and control conditions, encompassing 603 healthy participants from 20 (out of 28 eligible) studies. We find that placebo vs. control treatments induce small, widespread reductions in pain-related activity, particularly in regions belonging to ventral attention (including mid-insula) and somatomotor networks (including posterior insula). Behavioral placebo analgesia correlates with reduced pain-related activity in these networks and the thalamus, habenula, mid-cingulate, and supplementary motor area. Placebo-associated activity increases occur mainly in frontoparietal regions, with high between-study heterogeneity. We conclude that placebo treatments affect pain-related activity in multiple brain areas, which may reflect changes in nociception and/or other affective and decision-making processes surrounding pain. Between-study heterogeneity suggests that placebo analgesia is a multi-faceted phenomenon involving multiple cerebral mechanisms that differ across studies
Platelet-derived growth factors and receptors in canine lymphoma
Platelet-derived growth factors (PDGFs) belong to a family of polypeptide growth factors that signal through cell surface tyrosine kinase receptors to stimulate growth, proliferation and differentiation. Platelet-derived growth factor receptors (PDGFRs) are also considered important targets for specific kinase inhibitors in the treatment of several human tumours. The aim of this study was to investigate the role of PDGF-A, PDGFB, PDGFR-alpha and PDGFR-beta in canine lymphoma by determining gene and protein expression in lymph nodes of dogs with diffuse large B-cell lymphoma (DLBCL), peripheral T-cell lymphoma (PTCL), T-Iymphoblastic lymphoma (T-LBL) and in healthy control dogs. One lymph node was also studied at the end of therapy in a subset of dogs in remission for DLBCL. In controls, PDGF-A, PDGFR-alpha and PDGFR-beta mRNA levels were significantly higher than in DLBCLs, PTCLs and T-LBLs. However, PDGFR-alpha and PDGFR-beta were minimally expressed by lymphocytes and plasma cells in normal lymph nodes as determined by immunohistochemistry, while neoplastic B and T cells showed the highest score (P <0.05). This discordant result may be compatible with the constitutive expression of these molecules by endothelial cells and fibroblasts in normal lymph nodes, thereby influencing gene expression results. Furthermore, these cells were not included in the immunohistochemical analysis. Similarly, dogs with DLBCL that were in remission at the end of therapy showed significantly higher gene expression of PDGFs and receptors than at the time of diagnosis and with an opposite trend to the protein assay. PDGF-B protein and mRNA were overexpressed in PTCLs and T-LBLs when compared with DLBCLs and controls (P <0.05). Additionally, there was a correlation between protein expression of PDGF-B and both PDGFRs in PTCLs and T-LBLs, suggesting an autocrine or paracrine loop in the aetiology of aggressive canine T-cell lymphomas. These data provide a rationale for the use of PDGFR antagonists in the therapy of aggressive T-cell lymphomas, but not in DLBCLs. (C) 2014 Elsevier Ltd. All rights reserved
Preclinical Evaluation of the Novel, Orally Bioavailable Selective Inhibitor of Nuclear Export (SINE) KPT-335 in Spontaneous Canine Cancer: Results of a Phase I Study
BACKGROUND: The purpose of this study was to evaluate the activity of Selective Inhibitors of Nuclear Export (SINE) compounds that inhibit the function of the nuclear export protein Exportin 1 (XPO1/CRM1) against canine tumor cell lines and perform a Phase I clinical trial of KPT-335 in dogs with spontaneous cancer to provide a preliminary assessment of biologic activity and tolerability. METHODS AND FINDINGS: Canine tumor cell lines derived from non-Hodgkin lymphoma (NHL), mast cell tumor, melanoma and osteosarcoma exhibited growth inhibition and apoptosis in response to nanomolar concentrations of SINE compounds; NHL cells were particularly sensitive with IC(50) concentrations ranging from 2–42 nM. A Phase I clinical trial of KPT-335 was performed in 17 dogs with NHL (naive or relapsed), mast cell tumor or osteosarcoma. The maximum tolerated dose was 1.75 mg/kg given orally twice/week (Monday/Thursday) although biologic activity was observed at 1 mg/kg. Clinical benefit (CB) including partial response to therapy (PR, n = 2) and stable disease (SD, n = 7) was observed in 9/14 dogs with NHL with a median time to progression (TTP) for responders of 66 days (range 35–256 days). A dose expansion study was performed in 6 dogs with NHL given 1.5 mg/kg KPT-335 Monday/Wednesday/Friday; CB was observed in 4/6 dogs with a median TTP for responders of 83 days (range 35–354 days). Toxicities were primarily gastrointestinal consisting of anorexia, weight loss, vomiting and diarrhea and were manageable with supportive care, dose modulation and administration of low dose prednisone; hepatotoxicity, anorexia and weight loss were the dose limiting toxicities. CONCLUSIONS: This study provides evidence that the novel orally bioavailable XPO1 inhibitor KPT-335 is safe and exhibits activity in a relevant, spontaneous large animal model of cancer. Data from this study provides critical new information that lays the groundwork for evaluation of SINE compounds in human cancer
Neurophysiological and behavioural markers of compassion
The scientific study of compassion is burgeoning, however the putative neurophysiological markers of programs which actively train distress tolerance, such as Compassionate Mind Training (CMT), are less well known. Herein we offer an integrative, multi-method approach which investigated CMT at neural, physiological, self-report, and behavioural levels. Specifically, this study first assessed participants’ neural responses when confronted with disappointments (e.g., rejection, failure) using two fundamental self-regulatory styles, self-criticism and self-reassurance. Second, participant’s heart-rate variability (HRV) – a marker of parasympathetic nervous system response – was assessed during compassion training, pre- and post- a two-week self-directed engagement period. We identified neural networks associated with threat are reduced when practicing compassion, and heightened when being self-critical. In addition, cultivating compassion was associated with increased parasympathetic response as measured by an increase in HRV, versus the resting-state. Critically, cultivating compassion was able to shift a subset of clinically-at risk participants to one of increased parasympathetic response. Further, those who began the trial with lower resting HRV also engaged more in the intervention, possibly as they derived more benefits, both self-report and physiologically, from engagement in compassion.N/
Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation
Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs