1,011 research outputs found

    Compressed correlation functions and fast aging dynamics in metallic glasses

    Full text link
    We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, thus faster than exponential, correlation functions which can be modeled by the well-known Kohlrausch-Williams-Watts function with a shape exponent {\beta} larger than one. This parameter is furthermore found to be independent of both waiting time and wave-vector, leading to the possibility to rescale all the correlation functions to a single master curve. The dynamics in the glassy state is additionally characterized by different aging regimes which persist in the deep glassy state. These features seem to be universal in metallic glasses and suggest a non diffusive nature of the dynamics. This universality is supported by the possibility of describing the fast increase of the structural relaxation time with waiting time using a unique model function, independently of the microscopic details of the system.Comment: 7 pages, 4 figures. To be published in J. Chem. Phy

    Macroevolutionary Patterns In The Evolutionary Radiation Of Archosaurs (Tetrapoda: Diapsida)

    Get PDF
    The rise of archosaurs during the Triassic and Early Jurassic has been treated as a classic example of an evolutionary radiation in the fossil record. This paper reviews published studies and provides new data on archosaur lineage origination, diversity and lineage evolution, morphological disparity, rates of morphological character change, and faunal abundance during the Triassic–Early Jurassic. The fundamental archosaur lineages originated early in the Triassic, in concert with the highest rates of character change. Disparity and diversity peaked later, during the Norian, but the most significant increase in disparity occurred before maximum diversity. Archosaurs were rare components of Early–Middle Triassic faunas, but were more abundant in the Late Triassic and pre-eminent globally by the Early Jurassic. The archosaur radiation was a drawn-out event and major components such as diversity and abundance were discordant from each other. Crurotarsans (crocodile-line archosaurs) were more disparate, diverse, and abundant than avemetatarsalians (bird-line archosaurs, including dinosaurs) during the Late Triassic, but these roles were reversed in the Early Jurassic. There is no strong evidence that dinosaurs outcompeted or gradually eclipsed crurotarsans during the Late Triassic. Instead, crurotarsan diversity decreased precipitously by the end-Triassic extinction, which helped usher in the age of dinosaurian dominance

    A Methodology for the Diagnostic of Aircraft Engine Based on Indicators Aggregation

    Full text link
    Aircraft engine manufacturers collect large amount of engine related data during flights. These data are used to detect anomalies in the engines in order to help companies optimize their maintenance costs. This article introduces and studies a generic methodology that allows one to build automatic early signs of anomaly detection in a way that is understandable by human operators who make the final maintenance decision. The main idea of the method is to generate a very large number of binary indicators based on parametric anomaly scores designed by experts, complemented by simple aggregations of those scores. The best indicators are selected via a classical forward scheme, leading to a much reduced number of indicators that are tuned to a data set. We illustrate the interest of the method on simulated data which contain realistic early signs of anomalies.Comment: Proceedings of the 14th Industrial Conference, ICDM 2014, St. Petersburg : Russian Federation (2014

    A Non-Sequential Representation of Sequential Data for Churn Prediction

    Get PDF
    We investigate the length of event sequence giving best predictions when using a continuous HMM approach to churn prediction from sequential data. Motivated by observations that predictions based on only the few most recent events seem to be the most accurate, a non-sequential dataset is constructed from customer event histories by averaging features of the last few events. A simple K-nearest neighbor algorithm on this dataset is found to give significantly improved performance. It is quite intuitive to think that most people will react only to events in the fairly recent past. Events related to telecommunications occurring months or years ago are unlikely to have a large impact on a customer’s future behaviour, and these results bear this out. Methods that deal with sequential data also tend to be much more complex than those dealing with simple nontemporal data, giving an added benefit to expressing the recent information in a non-sequential manner

    Combined XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers

    Get PDF
    A novel composite material consisting of carbon nanofibers (CNF) grown on sintered metal fibers (SMF) filters was modified by H2O2 or plasma-generated O3. Coupling TPD and XPS techniques in the same UHV apparatus allowed the direct correlation between the nature of the created O-functional groups and their evolution as CO and CO2 upon heating. The two oxidative treatments yielded different distributions of O-containing groups. The relative contribution of oxidized carbon was very low in the C1s region, so the functional groups were better analyzed in the O1s region. The quantification of the released oxygen by integration of the TPD CO, CO2 and H2O spectra, compared with the intensity loss of the XPS O1s spectra showed a good agreement. In order to fit the data adequately, the set of O1s spectra was decomposed in at least four peaks for the differently activated samples. Finally, it was shown that functional groups formed by H2O2-treatment (mostly non-phenolic OH groups) are thermally more stable than the ones formed by O3-treatment. The latter treatment increases the concentration of carboxylic functionalities, which decomposes at temperatures < 800 K; O3-activated CNF therefore should show a more pronounced acidic behavior
    corecore