4 research outputs found

    Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer.

    Get PDF
    ERBB receptor transmodulation by heterologous G-protein-coupled receptors (GPCR) generates functional diversity in signal transduction. Tachykinins are neuropeptides and proinflammatory cytokines that promote cell survival and cancer progression by activating several GPCRs. In this work, we found that the pain-associated tachykinin Substance P (SP) contributes to persistent transmodulation of the ERBB receptors, EGFR and HER2, in breast cancer, acting to enhance malignancy and therapeutic resistance. SP and its high-affinity receptor NK-1R were highly expressed in HER2(+) primary breast tumors (relative to the luminal and triple-negative subtypes) and were overall correlated with poor prognosis factors. In breast cancer cell lines and primary cultures derived from breast cancer samples, we found that SP could activate HER2. Conversely, RNA interference-mediated attenuation of NK-1R, or its chemical inhibition, or suppression of overall GPCR-mediated signaling, all strongly decreased steady-state expression of EGFR and HER2, establishing that their basal activity relied upon transdirectional activation by GPCR. Thus, SP exposure affected cellular responses to anti-ERBB therapies. Our work reveals an important oncogenic cooperation between NK-1R and HER2, thereby adding a novel link between inflammation and cancer progression that may be targetable by SP antagonists that have been clinically explored

    Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity.

    Get PDF
    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution

    Substance P autocrine signaling contributes to persistent HER2 activation that drives malignant progression and drug resistance in breast cancer.

    No full text
    ERBB receptor transmodulation by heterologous G-protein-coupled receptors (GPCR) generates functional diversity in signal transduction. Tachykinins are neuropeptides and proinflammatory cytokines that promote cell survival and cancer progression by activating several GPCRs. In this work, we found that the pain-associated tachykinin Substance P (SP) contributes to persistent transmodulation of the ERBB receptors, EGFR and HER2, in breast cancer, acting to enhance malignancy and therapeutic resistance. SP and its high-affinity receptor NK-1R were highly expressed in HER2(+) primary breast tumors (relative to the luminal and triple-negative subtypes) and were overall correlated with poor prognosis factors. In breast cancer cell lines and primary cultures derived from breast cancer samples, we found that SP could activate HER2. Conversely, RNA interference-mediated attenuation of NK-1R, or its chemical inhibition, or suppression of overall GPCR-mediated signaling, all strongly decreased steady-state expression of EGFR and HER2, establishing that their basal activity relied upon transdirectional activation by GPCR. Thus, SP exposure affected cellular responses to anti-ERBB therapies. Our work reveals an important oncogenic cooperation between NK-1R and HER2, thereby adding a novel link between inflammation and cancer progression that may be targetable by SP antagonists that have been clinically explored

    Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity.

    No full text
    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution
    corecore