107 research outputs found

    Convergent Evolution in Aquatic Tetrapods: Insights from an Exceptional Fossil Mosasaur

    Get PDF
    Mosasaurs (family Mosasauridae) are a diverse group of secondarily aquatic lizards that radiated into marine environments during the Late Cretaceous (98–65 million years ago). For the most part, they have been considered to be simple anguilliform swimmers – i.e., their propulsive force was generated by means of lateral undulations incorporating the greater part of the body – with unremarkable, dorsoventrally narrow tails and long, lizard-like bodies. Convergence with the specialized fusiform body shape and inferred carangiform locomotory style (in which only a portion of the posterior body participates in the thrust-producing flexure) of ichthyosaurs and metriorhynchid crocodyliform reptiles, along with cetaceans, has so far only been recognized in Plotosaurus, the most highly derived member of the Mosasauridae. Here we report on an exceptionally complete specimen (LACM 128319) of the moderately derived genus Platecarpus that preserves soft tissues and anatomical details (e.g., large portions of integument, a partial body outline, putative skin color markings, a downturned tail, branching bronchial tubes, and probable visceral traces) to an extent that has never been seen previously in any mosasaur. Our study demonstrates that a streamlined body plan and crescent-shaped caudal fin were already well established in Platecarpus, a taxon that preceded Plotosaurus by 20 million years. These new data expand our understanding of convergent evolution among marine reptiles, and provide insights into their evolution's tempo and mode

    Naomi: a new modelling tool for estimating HIV epidemic indicators at the district level in sub-Saharan Africa.

    Get PDF
    INTRODUCTION: HIV planning requires granular estimates for the number of people living with HIV (PLHIV), antiretroviral treatment (ART) coverage and unmet need, and new HIV infections by district, or equivalent subnational administrative level. We developed a Bayesian small-area estimation model, called Naomi, to estimate these quantities stratified by subnational administrative units, sex, and five-year age groups. METHODS: Small-area regressions for HIV prevalence, ART coverage and HIV incidence were jointly calibrated using subnational household survey data on all three indicators, routine antenatal service delivery data on HIV prevalence and ART coverage among pregnant women, and service delivery data on the number of PLHIV receiving ART. Incidence was modelled by district-level HIV prevalence and ART coverage. Model outputs of counts and rates for each indicator were aggregated to multiple geographic and demographic stratifications of interest. The model was estimated in an empirical Bayes framework, furnishing probabilistic uncertainty ranges for all output indicators. Example results were presented using data from Malawi during 2016-2018. RESULTS: Adult HIV prevalence in September 2018 ranged from 3.2% to 17.1% across Malawi's districts and was higher in southern districts and in metropolitan areas. ART coverage was more homogenous, ranging from 75% to 82%. The largest number of PLHIV was among ages 35 to 39 for both women and men, while the most untreated PLHIV were among ages 25 to 29 for women and 30 to 34 for men. Relative uncertainty was larger for the untreated PLHIV than the number on ART or total PLHIV. Among clients receiving ART at facilities in Lilongwe city, an estimated 71% (95% CI, 61% to 79%) resided in Lilongwe city, 20% (14% to 27%) in Lilongwe district outside the metropolis, and 9% (6% to 12%) in neighbouring Dowa district. Thirty-eight percent (26% to 50%) of Lilongwe rural residents and 39% (27% to 50%) of Dowa residents received treatment at facilities in Lilongwe city. CONCLUSIONS: The Naomi model synthesizes multiple subnational data sources to furnish estimates of key indicators for HIV programme planning, resource allocation, and target setting. Further model development to meet evolving HIV policy priorities and programme need should be accompanied by continued strengthening and understanding of routine health system data

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.

    Get PDF
    OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p [BI] = 4.4 × 10-10; p [SSBI] = 1.2 × 10-4), diabetes (p [BI] = 1.7 × 10-8; p [SSBI] = 2.8 × 10-3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI

    Calcification in a chromophobe adenoma

    No full text

    Skin of the Cretaceous mosasaur Plotosaurus: implications for aquatic adaptations in giant marine reptiles

    No full text
    The physical nature of water and the environment it presents to an organism have long been recognized as important constraints on aquatic adaptation and evolution. Little is known about the dermal cover of mosasauroids (a group of secondarily aquatic reptiles that occupied a wide array of predatory niches in the Cretaceous marine ecosystems 92–65 Myr ago), a lack of information that has hindered inferences about the nature and level of their aquatic adaptations. A newly discovered Plotosaurus skeleton with integument preserved in three dimensions represents not only the first documented squamation in a mosasaurine mosasaur but also the first record of skin in an advanced member of the Mosasauroidea. The dermal cover comprises keeled and possibly osteoderm-reinforced scales that presumably contributed to an anterior–posterior channelling of the water flow and a reduction of microturbulent burst activities along the surface of the skin. Thus, hydrodynamic requirements of life in the water might have influenced the evolution of multiple-keeled body scales in advanced mosasauroids
    corecore