62 research outputs found
Invasive Fire Ants Reduce Reproductive Success and Alter the Reproductive Strategies of a Native Vertebrate Insectivore
BACKGROUND: Introduced organisms can alter ecosystems by disrupting natural ecological relationships. For example, red imported fire ants (Solenopsis invicta) have disrupted native arthropod communities throughout much of their introduced range. By competing for many of the same food resources as insectivorous vertebrates, fire ants also have the potential to disrupt vertebrate communities. METHODOLOGY/PRINCIPAL FINDINGS: To explore the effects of fire ants on a native insectivorous vertebrate, we compared the reproductive success and strategies of eastern bluebirds (Sialia sialis) inhabiting territories with different abundances of fire ants. We also created experimental dyads of adjacent territories comprised of one territory with artificially reduced fire ant abundance (treated) and one territory that was unmanipulated (control). We found that more bluebird young fledged from treated territories than from adjacent control territories. Fire ant abundance also explained significant variation in two measures of reproductive success across the study population: number of fledglings and hatching success of second clutches. Furthermore, the likelihood of bluebird parents re-nesting in the same territory was negatively influenced by the abundance of foraging fire ants, and parents nesting in territories with experimentally reduced abundances of fire ants produced male-biased broods relative to pairs in adjacent control territories. CONCLUSIONS/SIGNIFICANCE: Introduced fire ants altered both the reproductive success (number of fledglings, hatching success) and strategies (decision to renest, offspring sex-ratio) of eastern bluebirds. These results illustrate the negative effects that invasive species can have on native biota, including species from taxonomically distant groups
Evolutionary innovation and diversification of carotenoid-based pigmentation in finches
© 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution. The ornaments used by animals to mediate social interactions are diverse, and by reconstructing their evolutionary pathways we can gain new insights into the mechanisms underlying ornamental innovation and variability. Here, we examine variation in plumage carotenoids among the true finches (Aves: Fringillidae) using biochemical and comparative phylogenetic analyses to reconstruct the evolutionary history of carotenoid states and evaluate competing models of carotenoid evolution. Our comparative analyses reveal that the most likely ancestor of finches used dietary carotenoids as yellow plumage colorants, and that the ability to metabolically modify dietary carotenoids into more complex pigments arose secondarily once finches began to use modified carotenoids to create red plumage. Following the evolutionary âinnovationâ that enabled modified red carotenoid pigments to be deposited as plumage colorants, many finch species subsequently modified carotenoid biochemical pathways to create yellow plumage. However, no reversions to dietary carotenoids were observed. The finding that ornaments and their underlying mechanisms may be operating under different selection regimesâwhere ornamental trait colors undergo frequent reversions (e.g., between red and yellow plumage) while carotenoid metabolization mechanisms are more conservedâsupports a growing empirical framework suggesting different evolutionary patterns for ornaments and the mechanistic innovations that facilitate their diversification
The effect of carotenoid supplementation on immune system development in juvenile male veiled chameleons (Chamaeleo calyptratus)
Abstract Introduction Nutrient availability, assimilation, and allocation can have important and lasting effects on the immune system development of growing animals. Though carotenoid pigments have immunostimulatory properties in many animals, relatively little is known regarding how they influence the immune system during development. Moreover, studies linking carotenoids to health at any life stage have largely been restricted to birds and mammals. We investigated the effects of carotenoid supplementation on multiple aspects of immunity in juvenile veiled chameleons (Chamaeleo calyptratus). We supplemented half of the chameleons with lutein (a xanthophyll carotenoid) for 14Â weeks during development and serially measured multiple aspects of immune function, including: agglutination and lysis performance of plasma, wound healing, and plasma nitric oxide concentrations before and after wounding. Results Though lutein supplementation effectively elevated circulating carotenoid concentrations throughout the developmental period, we found no evidence that carotenoid repletion enhanced immune function at any point. However, agglutination and lysis scores increased, while baseline nitric oxide levels decreased, as chameleons aged. Conclusions Taken together, our results indicate that body mass and age, but not carotenoid access, may play an important role in immune performance of growing chameleons. Hence, studying well-understood physiological processes in novel taxa can provide new perspectives on alternative physiological processes and nutrient function
Host Reproductive Phenology Drives Seasonal Patterns of Host Use in Mosquitoes
Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1) the shift is driven by changes in host abundance, or (2) the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron) and ectothermic (frogs) hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts), quiescent young (avian and mammalian hosts), and mate-seeking males (frogs)
The importance of the altricial â precocial spectrum for social complexity in mammals and birds:A review
Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the âaltricial-precocialâ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems
Data from: Chameleons communicate with complex colour changes during contests: different body regions convey different information
Many animals display static coloration (e.g. of feathers or fur) that can serve as a reliable sexual or social signal, but the communication function of rapidly changing colours (as in chameleons and cephalopods) is poorly understood. We used recently developed photographic and mathematical modelling tools to examine how rapid colour changes of veiled chameleons Chamaeleo calyptratus predict aggressive behaviour during maleâmale competitions. Males that achieved brighter stripe coloration were more likely to approach their opponent, and those that attained brighter head coloration were more likely to win fights; speed of head colour change was also an important predictor of contest outcome. This correlative study represents the first quantification of rapid colour change using organism-specific visual models and provides evidence that the rate of colour change, in addition to maximum display coloration, can be an important component of communication. Interestingly, the body and head locations of the relevant colour signals map onto the behavioural displays given during specific contest stages, with lateral displays from a distance followed by directed, head-on approaches prior to combat, suggesting that different colour change signals may evolve to communicate different information (motivation and fighting ability, respectively)
Data from: A chorus of color: hierarchical and graded information content of rapid color change signals in chameleons
Animals rely on information-rich signals to minimize costs associated with competition. If fighting ability is linked to stable individual attributes (e.g. morphology), the signals that communicate information about such ability should be relatively static. Conversely, the temporal variability of motivation should favor dynamic threat signals that indicate an animal's likelihood of escalating a contest. Though static colors are used by many animals to signal quality or fighting ability, the function of dynamic color change as a social signal has only recently begun to be investigated. Here, we examined the information content of rapid physiological color changes displayed by adult male veiled chameleons Chamaeleo calyptratus during agonistic interactions by conducting experimental trials between live chameleons and standardized, experimentally-controlled robochameleon models. Chameleons reliably communicated motivation with dynamic color displays â individuals that brightened were 14 times more likely to approach the robochameleon than non-brightening individuals. Additionally, chameleons with shorter latencies to maximum stripe brightness had stronger bites, and those displaying brighter, yellower stripes exhibited more aggression. The parallels between dynamic color changes and the vocalizations used to mediate aggressive interactions in other taxa are numerous. The use of particular vocalizations/color changes can signal motivation levels while specific signal elements (e.g. pitch, timing, brightness) may be linked to fighting ability. Because the complexity and potential information content of color signals increases markedly when organisms can display context-specific variation in the expression of these ornaments, the study of dynamic color signals is a field ripe for the investigation of complex visual and signaling strategies
Data from: Social costs enforce honesty of a dynamic signal of motivation
Understanding the processes that promote signal reliability may provide important insights into the evolution of diverse signaling strategies among species. The signals that animals use to communicate must comprise mechanisms that prohibit or punish dishonesty, and social costs of dishonesty have been demonstrated for several fixed morphological signals (e.g. color badges of birds and wasps). The costs maintaining the honesty of dynamic signals, which are more flexible and potentially cheatable, are unknown. Using an experimental manipulation of the dynamic visual signals used by male veiled chameleons (Chamaeleo calyptratus) during aggressive interactions, we tested the idea that the honesty of rapid color change signals is maintained by social costs. Our results reveal that social costs are an important mechanism maintaining the honesty of these dynamic color signals â 'dishonest' chameleons whose experimentally manipulated coloration was incongruent with their contest behavior received more physical aggression than 'honest' individuals. This is the first demonstration that the honesty of a dynamic signal of motivation â physiological color change â can be maintained by the social costliness of dishonesty. Behavioral responses of signal receivers, irrespective of any specific detection mechanisms, therefore prevent chameleon cheaters from prospering
Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons
<div><p>Stressors frequently increase oxidative damageâunless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (<i>Chamaeleo calyptratus</i>), which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with <i>smaller</i> spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleenâs importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdinâs antioxidant role in this species.</p></div
- âŠ