1,019 research outputs found

    Impeller Repair Techniques For Centrifugal Compressors.

    Get PDF
    LecturePg. 91-106Successfully repairing centrifugal compressor impellers requires careful consideration and planning. The selection of techniques for inspection, material, and welding procedures are determined by numerous factors. Original design and manufacturing techniques, the nature of a failure, and environmental or process concerns all play a role. The relevant issues are addressed that may assist the user's maintenance personnel in formulating an overall strategy to extend the service life of their impellers through the selection of adequate repair procedures

    Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays

    Get PDF
    Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives

    The Palomar Transient Factory Orion Project: Eclipsing Binaries and Young Stellar Objects

    Get PDF
    The Palomar Transient Factory (PTF) Orion project is an experiment within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide field of view available using the PTF camera at the Palomar 48" telescope, 40 nights were dedicated in December 2009-January 2010 to perform continuous high-cadence differential photometry on a single field containing the young (7-10Myr) 25 Ori association. The primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper we describe the survey and data reduction pipeline, and present initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which we are candidate 25 Ori- or Orion OB1a-association members. Of these, 2 are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include 6 of the candidate young systems. 45 of the binary systems are close (mainly contact) systems; one shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 \pm 0.0000071d, with flat-bottomed primary eclipses, and a derived distance consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one previously reported as a candidate weak-line T-Tauri star (SDSS J052700.12+010136.8).Comment: 66 pages, 27 figures, accepted to Astronomical Journal. Minor typographical corrections and update to author affiliation

    SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems

    Get PDF
    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450 - 900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/22, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (<<25 pc) with masses ranging from a few Jupiter masses to Super Earths (∼\sim2 Earth radii, ∼\sim10 M⊕_{\oplus}) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap

    Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO_2 Fixation

    Get PDF
    Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Quantitative Deep Sequencing Reveals Dynamic HIV-1 Escape and Large Population Shifts during CCR5 Antagonist Therapy In Vivo

    Get PDF
    High-throughput sequencing platforms provide an approach for detecting rare HIV-1 variants and documenting more fully quasispecies diversity. We applied this technology to the V3 loop-coding region of env in samples collected from 4 chronically HIV-infected subjects in whom CCR5 antagonist (vicriviroc [VVC]) therapy failed. Between 25,000–140,000 amplified sequences were obtained per sample. Profound baseline V3 loop sequence heterogeneity existed; predicted CXCR4-using populations were identified in a largely CCR5-using population. The V3 loop forms associated with subsequent virologic failure, either through CXCR4 use or the emergence of high-level VVC resistance, were present as minor variants at 0.8–2.8% of baseline samples. Extreme, rapid shifts in population frequencies toward these forms occurred, and deep sequencing provided a detailed view of the rapid evolutionary impact of VVC selection. Greater V3 diversity was observed post-selection. This previously unreported degree of V3 loop sequence diversity has implications for viral pathogenesis, vaccine design, and the optimal use of HIV-1 CCR5 antagonists

    Using Functional Signatures to Identify Repositioned Drugs for Breast, Myelogenous Leukemia and Prostate Cancer

    Get PDF
    The cost and time to develop a drug continues to be a major barrier to widespread distribution of medication. Although the genomic revolution appears to have had little impact on this problem, and might even have exacerbated it because of the flood of additional and usually ineffective leads, the emergence of high throughput resources promises the possibility of rapid, reliable and systematic identification of approved drugs for originally unintended uses. In this paper we develop and apply a method for identifying such repositioned drug candidates against breast cancer, myelogenous leukemia and prostate cancer by looking for inverse correlations between the most perturbed gene expression levels in human cancer tissue and the most perturbed expression levels induced by bioactive compounds. The method uses variable gene signatures to identify bioactive compounds that modulate a given disease. This is in contrast to previous methods that use small and fixed signatures. This strategy is based on the observation that diseases stem from failed/modified cellular functions, irrespective of the particular genes that contribute to the function, i.e., this strategy targets the functional signatures for a given cancer. This function-based strategy broadens the search space for the effective drugs with an impressive hit rate. Among the 79, 94 and 88 candidate drugs for breast cancer, myelogenous leukemia and prostate cancer, 32%, 13% and 17% respectively are either FDA-approved/in-clinical-trial drugs, or drugs with suggestive literature evidences, with an FDR of 0.01. These findings indicate that the method presented here could lead to a substantial increase in efficiency in drug discovery and development, and has potential application for the personalized medicine
    • …
    corecore