470 research outputs found
Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria
Although plant roots encounter a plethora of microorganisms in the surrounding soil, at the rhizosphere, plants exert selective forces on their bacterial colonizers. Unlike immune recognition of pathogenic bacteria, the mechanisms by which beneficial bacteria are selected and how they interact with the plant immune system are not well understood. To better understand this process, we studied the interaction of auxin-producing Bacillus velezensis FZB42 with Arabidopsis roots and found that activation of the plant immune system is necessary for efficient bacterial colonization and auxin secretion. A feedback loop is established in which bacterial colonization triggers an immune reaction and production of reactive oxygen species, which, in turn, stimulate auxin production by the bacteria. Auxin promotes bacterial survival and efficient root colonization, allowing the bacteria to inhibit fungal infection and promote plant health. Thus, a feedback loop between bacteria and the plant immune system promotes the fitness of both partners
Deep discovery informs difficult deployment in plant microbiome science
Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field
Knudsen gas in a finite random tube: transport diffusion and first passage properties
We consider transport diffusion in a stochastic billiard in a random tube
which is elongated in the direction of the first coordinate (the tube axis).
Inside the random tube, which is stationary and ergodic, non-interacting
particles move straight with constant speed. Upon hitting the tube walls, they
are reflected randomly, according to the cosine law: the density of the
outgoing direction is proportional to the cosine of the angle between this
direction and the normal vector. Steady state transport is studied by
introducing an open tube segment as follows: We cut out a large finite segment
of the tube with segment boundaries perpendicular to the tube axis. Particles
which leave this piece through the segment boundaries disappear from the
system. Through stationary injection of particles at one boundary of the
segment a steady state with non-vanishing stationary particle current is
maintained. We prove (i) that in the thermodynamic limit of an infinite open
piece the coarse-grained density profile inside the segment is linear, and (ii)
that the transport diffusion coefficient obtained from the ratio of stationary
current and effective boundary density gradient equals the diffusion
coefficient of a tagged particle in an infinite tube. Thus we prove Fick's law
and equality of transport diffusion and self-diffusion coefficients for quite
generic rough (random) tubes. We also study some properties of the crossing
time and compute the Milne extrapolation length in dependence on the shape of
the random tube.Comment: 51 pages, 3 figure
The Plant Microbiome: From Ecology to Reductionism and beyond
Methodological advances over the past two decades have propelled plant microbiome research, allowing the field to comprehensively test ideas proposed over a century ago and generate many new hypotheses. Studying the distribution of microbial taxa and genes across plant habitats has revealed the importance of various ecological and evolutionary forces shaping plant microbiota. In particular, selection imposed by plant habitats strongly shapes the diversity and composition of microbiota and leads to microbial adaptation associated with navigating the plant immune system and utilizing plant-derived resources. Reductionist approaches have demonstrated that the interaction between plant immunity and the plant microbiome is, in fact, bidirectional and that plants, microbiota, and the environment shape a complex chemical dialogue that collectively orchestrates the plant microbiome. The next stage in plant microbiome research will require the integration of ecological and reductionist approaches to establish a general understanding of the assembly and function in both natural and managed environments
Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model
We discuss the localization behavior of localized electronic wave functions
in the one- and two-dimensional tight-binding Anderson model with diagonal
disorder. We find that the distributions of the local wave function amplitudes
at fixed distances from the localization center are well approximated by
log-normal fits which become exact at large distances. These fits are
consistent with the standard single parameter scaling theory for the Anderson
model in 1d, but they suggest that a second parameter is required to describe
the scaling behavior of the amplitude fluctuations in 2d. From the log-normal
distributions we calculate analytically the decay of the mean wave functions.
For short distances from the localization center we find stretched exponential
localization ("sublocalization") in both, 1d and 2d. In 1d, for large
distances, the mean wave functions depend on the number of configurations N
used in the averaging procedure and decay faster that exponentially
("superlocalization") converging to simple exponential behavior only in the
asymptotic limit. In 2d, in contrast, the localization length increases
logarithmically with the distance from the localization center and
sublocalization occurs also in the second regime. The N-dependence of the mean
wave functions is weak. The analytical result agrees remarkably well with the
numerical calculations.Comment: 12 pages with 9 figures and 1 tabl
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
Observation of Orbitally Excited B_s Mesons
We report the first observation of two narrow resonances consistent with
states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar
collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the
Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed
as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+,
\bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1})
= 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
- …