787 research outputs found

    Effects of three nitrate levels on beans, cabbage, sweet corn, lettuce, radish and tomato yields

    Get PDF
    The purpose of this experiment was to secure data on the yields of beans, cabbage, sweet com, leaf lettuce, radishes and tomatoes when grown on soils with different nitrate levels. This information should be helpful in determining nitrogen fertilization requirements and serve as a guide in making fertilizer recommendations

    Ladies First: The Ways Women and Girls Affected Change in the Civil Rights Movement in New Orleans

    Get PDF
    New Orleans Historical is a project of the Midlo Center for New Orleans Studies in the History Department of the University of New Orleans. This thesis and tour presents and discusses the “Ladies First” tour which contains seven tour stops on New Orleans Historical. The tour chronicles seven women and girls who have advanced the cause of equal rights and justice in the metropolitan region of New Orleans, Louisiana between 1950 and 1975. This thesis examines the work of seven key figures: Rosa Keller, Doratha “Dodie” Simmons, Marie Ortiz, Sybil Morial, and Dorothy Mae Taylor; and participants in the Civil Rights Movement, two young Black girls, Leona Tate and Ruby Bridges. These seven women’s activism centered on three principal areas: for education, resistance to segregation, and political participation. Keywords: Activism, African American, Black, Civil Rights Movement, Women, Girls, New Orleans, Segregation, Integratio

    Chemical and Thermal Analysis

    Get PDF
    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances

    International Research Project on the Effects of Chemical Ageing of Polymers on Performance Properties: Chemical and Thermal Analysis

    Get PDF
    Work during the past six months has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted small changes in the molecular weight distribution. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Ultra- Violet Scanning Analysis, GC/Mass Spectrometry, Differential Scanning Calorimetry and Thermomechanical Analysis. In the ultra-violet analysis we noted the presence of an absorption band indicative of triene formation. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We also cast films at SWT and subjected these films to a refluxing methanol 1% ethylene diamine solution. An updated literature search was conducted using Dialog and DROLLS to identify any new papers that may have been published in the open literature since the start of this project. The updated literature search and abstracts are contained in the Appendix section of this report

    Chemical and Thermal Analysis

    Get PDF
    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested

    Chemical and Thermal Analysis

    Get PDF
    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures

    Chemical Analyses

    Get PDF
    As a preliminary study on the effects of chemical aging of polymer materials MERL and TRI have examined two polymeric materials that are typically used for offshore umbilical applications. These two materials were Tefzel, a copolymer of ethylene and tetrafluoroethylene, and Coflon, polyvinylidene fluoride. The Coflon specimens were cut from pipe sections and exposed to H2S at various temperatures and pressures. One of these specimens was tested for methane permeation, and another for H2S permeation. The Tefzel specimens were cut from .05 mm sheet stock material and were exposed to methanol at elevated temperature and pressure. One of these specimens was exposed to methanol permeation for 2 days at 100 C and 2500 psi. An additional specimen was exposed to liquid methanol for 3 days at 150 C and 15 Bar. Virgin specimens of each material were similarly prepared and tested

    Winter Habitat Quality but not Long- distance Dispersal Influences Apparent Reproductive Success in a Migratory Bird

    Get PDF
    Long- distance breeding and natal dispersal play central roles in many ecological and evolutionary processes, including gene flow, population dynamics, range expansion, and individual responses to fluctuating biotic and abiotic conditions. However, the relative contribution of long- distance dispersal to these processes depends on the ability of dispersing individuals to successfully reproduce in their new environment. Unfortunately, due to the difficulties associated with tracking dispersal in the field, relatively little is known about its reproductive consequences. Furthermore, because reproductive success is influenced by a variety of processes, disentangling the influence of each of these processes is critical to understanding the direct consequences of dispersal. In this study, we used stable hydrogen and carbon isotopes to estimate long- distance dispersal and winter territory quality in a migratory bird, the American Redstart (Setophaga ruticilla). We then applied Aster life-history models to quantify the strength of influence of these factors on apparent reproductive success. We found no evidence that male or female reproductive success was lower for long- distance dispersers relative to non- dispersing individuals. In contrast, carry- over effects from the winter season did influence male, but not female, reproductive success. Use of Aster models further revealed that for adult males, winter territory quality influenced the number of offspring produced whereas for yearling males, high- quality winter territories were associated with higher mating and nesting success. These results suggest that although long- distance natal and breeding dispersal carry no immediate reproductive cost for American Redstarts, reproductive success in this species may ultimately be limited by the quality of winter habitat

    Unlocking the Molecular Secrets of Antifolate Drug Resistance: A Multi-Omics Investigation of the NCI-60 Cell Line Panel

    Get PDF
    Drug resistance continues to be a significant problem in cancer therapy, leading to relapse and associated mortality. Although substantial progress has been made in understanding drug resistance, significant knowledge gaps remain concerning the molecular underpinnings that drive drug resistance and which processes are unique to certain drug classes. The NCI-60 cell line panel program has evaluated the activity of numerous anticancer agents against many common cancer cell line models and represents a highly valuable resource to study intrinsic drug resistance. Furthermore, great efforts have been undertaken to collect high-quality omics datasets to characterize these cell lines. The current study takes these two sources of data—drug response and omics profiles—and uses a multi-omics investigation to uncover molecular networks that differentiate cancer cells that are sensitive or resistant to antifolates, which is a commonly used class of anticancer drugs. Results from a combination of univariate and multivariate analyses showed numerous metabolic processes that differentiate sensitive and resistant cells, including differences in glycolysis and gluconeogenesis, arginine and proline metabolism, beta-alanine metabolism, purine metabolism, and pyrimidine metabolism. Further analysis using multivariate and integrated pathway analysis indicated purine metabolism as the major metabolic process separating cancer cells sensitive or resistant to antifolates. Additional pathways differentiating sensitive and resistant cells included autophagy-related processes (e.g., phagosome, lysosome, autophagy, mitophagy) and adhesion/cytoskeleton-related pathways (e.g., focal adhesion, regulation of actin cytoskeleton, tight junction). Volcano plot analysis and the receiver operating characteristic (ROC) curves of top selected variables differentiating Q1 and Q4 revealed the importance of genes involved in the regulation of the cytoskeleton and extracellular matrix (ECM). These results provide novel insights toward mechanisms of intrinsic antifolate resistance as it relates to interactions between nucleotide metabolism, autophagy, and the cytoskeleton. These processes should be evaluated in future studies to potentially derive novel therapeutic strategies and personalized treatment approaches to improve antifolate response

    Multi-Omics Analysis of NCI-60 Cell Line Data Reveals Novel Metabolic Processes Linked with Resistance to Alkylating Anti-Cancer Agents

    Get PDF
    This study aimed to elucidate the molecular determinants influencing the response of cancer cells to alkylating agents, a major class of chemotherapeutic drugs used in cancer treatment. The study utilized data from the National Cancer Institute (NCI)-60 cell line screening program and employed a comprehensive multi-omics approach integrating transcriptomic, proteomic, metabolomic, and SNP data. Through integrated pathway analysis, the study identified key metabolic pathways, such as cysteine and methionine metabolism, starch and sucrose metabolism, pyrimidine metabolism, and purine metabolism, that differentiate drug-sensitive and drug-resistant cancer cells. The analysis also revealed potential druggable targets within these pathways. Furthermore, copy number variant (CNV) analysis, derived from SNP data, between sensitive and resistant cells identified notable differences in genes associated with metabolic changes (WWOX, CNTN5, DDAH1, PGR), protein trafficking (ARL17B, VAT1L), and miRNAs (MIR1302-2, MIR3163, MIR1244-3, MIR1302-9). The findings of this study provide a holistic view of the molecular landscape and dysregulated pathways underlying the response of cancer cells to alkylating agents. The insights gained from this research can contribute to the development of more effective therapeutic strategies and personalized treatment approaches, ultimately improving patient outcomes in cancer treatment
    corecore