22 research outputs found
From charge transfer type insulator to superconductor
We propose a microscopic model Hamiltonian to account for impurity doping
induced insulator-superconductor transition and the coexistence of
antiferromagnetism and superconductivity in the high-Tc cuprates. The crossover
from non Fermi liquid to Fermi liquid regime characterized by delocalization of
delocalization of d electrons at Cu sites is discussed
First-principles calculation on the transport properties of molecular wires between Au clusters under equilibrium
Based on the matrix Green's function method combined with hybrid
tight-binding / density functional theory, we calculate the conductances of a
series of gold-dithiol molecule-gold junctions including benzenedithiol (BDT),
benzenedimethanethiol (BDMT), hexanedithiol (HDT), octanedithiol (ODT) and
decanedithiol (DDT). An atomically-contacted extended molecule model is used in
our calculation. As an important procedure, we determine the position of the
Fermi level by the energy reference according to the results from ultraviolet
photoelectron spectroscopy (UPS) experiments. After considering the
experimental uncertainty in UPS measurement, the calculated results of
molecular conductances near the Fermi level qualitatively agree with the
experimental values measured by Tao et. al. [{\it Science} 301, 1221 (2003);
{\it J. Am. Chem. Soc.} 125, 16164 (2003); {\it Nano. Lett.} 4, 267 (2004).]Comment: 12 pages,8 figure
Black carbon aerosol characterization in a remote area of qinghai–tibetan plateau, western china
AbstractThe concentrations, size distributions, and mixing states of refractory black carbon (rBC) aerosols were measured with a ground-based Single Particle Soot Photometer (SP2), and aerosol absorption was measured with an Aethalometer at Qinghai Lake (QHL), a rural area in the Northeastern Tibetan Plateau of China in October 2011. The area was not pristine, with an average rBC mass concentration of 0.36μgSTP-m−3 during the two-week campaign period. The rBC concentration peaked at night and reached the minimal in the afternoon. This diurnal cycle of concentration is negatively correlated with the mixed layer depth and ventilation. When air masses from the west of QHL were sampled in late afternoon to early evening, the average rBC concentration of 0.21μgSTP-m−3 was observed, representing the rBC level in a larger Tibetan Plateau region because of the highest mixed layer depth. A lognormal primary mode with mass median diameter (MMD) of ~175nm, and a small secondary lognormal mode with MMD of 470–500nm of rBC were observed. Relative reduction in the secondary mode during a snow event supports recent work that suggested size dependent removal of rBC by precipitation. About 50% of the observed rBC cores were identified as thickly coated by non-BC material. A comparison of the Aethalometer and SP2 measurements suggests that non-BC species significantly affect the Aethalometer measurements in this region. A scaling factor for the Aethalometer data at a wavelength of 880nm is therefore calculated based on the measurements, which may be used to correct other Aethalometer datasets collected in this region for a more accurate estimate of the rBC loading. The results present here significantly improve our understanding of the characteristics of rBC aerosol in the less studied Tibetan Plateau region and further highlight the size dependent removal of BC via precipitation