171 research outputs found

    Local rectification of heat flux

    Full text link
    We present a chain-of-atoms model where heat is rectified, with different fluxes from the hot to the cold baths located at the chain boundaries when the temperature bias is reversed. The chain is homogeneous except for boundary effects and a local modification of the interactions at one site, the "impurity". The rectification mechanism is due here to the localized impurity, the only asymmetrical element of the structure, apart from the externally imposed temperature bias, and does not rely on putting in contact different materials or other known mechanisms such as grading or long-range interactions. The effect survives if all interaction forces are linear except the ones for the impurity.Comment: 5 pages, 5 figure

    Stabilization of solitons in PT models with supersymmetry by periodic management

    Full text link
    We introduce a system based on dual-core nonlinear waveguides with the balanced gain and loss acting separately in the cores. The system features a "supersymmetry" when the gain and loss are equal to the inter-core coupling. This system admits a variety of exact solutions (we focus on solitons), which are subject to a specific subexponential instability. We demonstrate that the application of a "management", in the form of periodic simultaneous switch of the sign of the gain, loss, and inter-coupling, effectively stabilizes solitons, without destroying the supersymmetry. The management turns the solitons into attractors, for which an attraction basin is identified. The initial amplitude asymmetry and phase mismatch between the components transforms the solitons into quasi-stable breathers.Comment: In press EPL 201

    Dynamics of higher-order solitons in regular and PT-symmetric nonlinear couplers

    Full text link
    Dynamics of symmetric and antisymmetric 2-solitons and 3-solitons is studied in the model of the nonlinear dual-core coupler and its PT-symmetric version. Regions of the convergence of the injected perturbed symmetric and antisymmetric N-solitons into symmetric and asymmetric quasi-solitons are found. In the PT-symmetric system, with the balanced gain and loss acting in the two cores, borders of the stability against the blowup are identified. Notably, in all the cases the stability regions are larger for antisymmetric 2-soliton inputs than for their symmetric counterparts, on the contrary to previously known results for fundamental solitons (N=1). Dynamical regimes (switching) are also studied for the 2-soliton injected into a single core of the coupler. In particular, a region of splitting of the input into a pair of symmetric solitons is found, which is explained as a manifestation of the resonance between the vibrations of the 2-soliton and oscillations of energy between the two cores in the coupler.Comment: To appear in EPL journa

    Atom cooling by non-adiabatic expansion

    Full text link
    Motivated by the recent discovery that a reflecting wall moving with a square-root in time trajectory behaves as a universal stopper of classical particles regardless of their initial velocities, we compare linear in time and square-root in time expansions of a box to achieve efficient atom cooling. For the quantum single-atom wavefunctions studied the square-root in time expansion presents important advantages: asymptotically it leads to zero average energy whereas any linear in time (constant box-wall velocity) expansion leaves a non-zero residual energy, except in the limit of an infinitely slow expansion. For finite final times and box lengths we set a number of bounds and cooling principles which again confirm the superior performance of the square-root in time expansion, even more clearly for increasing excitation of the initial state. Breakdown of adiabaticity is generally fatal for cooling with the linear expansion but not so with the square-root expansion.Comment: 4 pages, 4 figure

    Transitionless quantum drivings for the harmonic oscillator

    Full text link
    Two methods to change a quantum harmonic oscillator frequency without transitions in a finite time are described and compared. The first method, a transitionless-tracking algorithm, makes use of a generalized harmonic oscillator and a non-local potential. The second method, based on engineering an invariant of motion, only modifies the harmonic frequency in time, keeping the potential local at all times.Comment: 11 pages, 1 figure. Submitted for publicatio

    Weak Measurements in Non-Hermitian Systems

    Full text link
    "Weak measurements" -- involving a weak unitary interaction between a quantum system and a meter followed by a projective measurement -- are investigated when the system has a non-Hermitian Hamiltonian. We show in particular how the standard definition of the "weak value" of an observable must be modified. These studies are undertaken in the context of bound state scattering theory, a non-Hermitian formalism for which the Hilbert spaces involved are unambiguously defined and the metric operators can be explicitly computed. Numerical examples are given for a model system

    Fast atomic transport without vibrational heating

    Get PDF
    We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The atom is driven non-adiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies and accelerations involved are analyzed, as well as the relation to previous approaches (based on classical trajectories or "fast-forward" and "bang-bang" methods) which can be integrated in the invariant-based framework.Comment: 10 pages, 5 figure

    Self-dual Spectral Singularities and Coherent Perfect Absorbing Lasers without PT-symmetry

    Full text link
    A PT-symmetric optically active medium that lases at the threshold gain also acts as a complete perfect absorber at the laser wavelength. This is because spectral singularities of PT-symmetric complex potentials are always accompanied by their time-reversal dual. We investigate the significance of PT-symmetry for the appearance of these self-dual spectral singularities. In particular, using a realistic optical system we show that self-dual spectral singularities can emerge also for non-PT-symmetric configurations. This signifies the existence of non-PT-symmetric CPA-lasers.Comment: 11 pages, 3 figures, 1 table, accepted for publication in J. Phys.
    • …
    corecore