20 research outputs found

    Enriched Environment Facilitates Anxiolytic Efficacy Driven by Deep-Brain Stimulation of Medial Prefrontal Cortex

    Get PDF
    Deep brain stimulation (DBS) is a widely used treatment for neurodegenerative disorders like Parkinson’s disease. Recently, several studies have used preclinical animal models to suggest that DBS has a potential to improve emotional symptoms in mental disorders such as treatment-resistant depression and post-traumatic stress disorder. An important difference between neurodegenerative and emotional disorders is the crucial role of environment in the ontogeny of the latter. Thus, it is important to understand the effects of DBS in the context of environmental variation. In this study, we show that DBS of ventromedial prefrontal cortex reduces anxiety in rats when it is coupled with simultaneous exposure to an enriched environment (EE). In contrast, effects of DBS on anxiety-like behaviors remained equivocal when animals were housed in standard laboratory conditions. These results suggest that the ability of DBS to treat anxiety and related phenotypes can be significantly enhanced by EE opportunities

    Short-Term Enrichment Makes Male Rats More Attractive, More Defensive and Alters Hypothalamic Neurons

    Get PDF
    Innate behaviors are shaped by contingencies built during evolutionary history. On the other hand, environmental stimuli play a significant role in shaping behavior. In particular, a short period of environmental enrichment can enhance cognitive behavior, modify effects of stress on learned behaviors and induce brain plasticity. It is unclear if modulation by environment can extend to innate behaviors which are preserved by intense selection pressure. In the present report we investigate this issue by studying effects of relatively short (14-days) environmental enrichment on two prominent innate behaviors in rats, avoidance of predator odors and ability of males to attract mates. We show that enrichment has strong effects on both the innate behaviors: a) enriched males were more avoidant of a predator odor than non-enriched controls, and had a greater rise in corticosterone levels in response to the odor; and b) had higher testosterone levels and were more attractive to females. Additionally, we demonstrate decrease in dendritic length of neurons of ventrolateral nucleus of hypothalamus, important for reproductive mate-choice and increase in the same in dorsomedial nucleus, important for defensive behavior. Thus, behavioral and hormonal observations provide evidence that a short period of environmental manipulation can alter innate behaviors, providing a good example of gene-environment interaction

    Prefrontal-hippocampus plasticity reinstated by an enriched environment during stress

    No full text
    Chronic stress causes dendritic atrophy of neurons within the hippocampus and medial prefrontal cortex. In this report, we show that chronic stress leads to reduced long-term potentiation in the pathway from the hippocampus to the medial prefrontal cortex of rats; and that such reduction is rescued by enriched housing environment. Connectivity between the hippocampus and medial prefrontal cortex is proposed to be an essential substrate that is often compromised in several psychiatric disorders. Our observations suggest that a short period of complexity in the housing environment has the potential to protect the functional integrity of this important connection.Ministry of Education (MOE)This study is supported by the Ministry of Education, Singapore (# RG 46/12) to RM

    Early-life short-term environmental enrichment counteracts the effects of stress on anxiety-like behavior, brain-derived neurotrophic factor and nuclear translocation of glucocorticoid receptors in the basolateral amygdala

    No full text
    Early life is a decisive stage for the development of physiological and psychological characteristics of an individual. Any stress or disruption of healthy development at this stage has serious long-lasting consequences for the remaining life. Unfortunately, early life stress is a common occurrence in humans and other animals. In this context, we investigated if the provision of environmental enrichment during the pre-weaning phase of rat pups and dams could alter the consequences of early-life maternal-separation stress. Pre-weaning enrichment rescued the effects of maternal separation on the excess secretion of adrenal stress hormones and anxiety-like behavior during adulthood. Enrichment also reduced the effect of stress on the spine density of basolateral amygdala neurons, a brain region critical for stress-induced facilitation of emotional behaviors. Pre-weaning enrichment, provided during early-life, blunted the effects of maternal separation stress on decreased intra-nuclear translocation of glucocorticoid receptors within the amygdala neurons when tested later in adulthood. Early-life, pre-weaning environmental enrichment also increased the amount of brain-derived neurotrophic factor within adult basolateral amygdala. Our observations showed that environmental manipulation during early formative years could be utilized to build lifelong resilience to stress. Complex naturalistic housing and sensory enrichment is, thus, an useful buffer against an impoverished and stressful childhood.Ministry of Education (MOE)Published versionThis work was supported by the Ministry of Education, Singapore (RG 144/17) to R.M. We thank Ajai Vyas for editing the manuscript

    Seeding stress resilience through inoculation

    No full text
    Stress is a generalized set of physiological and psychological responses observed when an organism is placed under challenging circumstances. The stress response allows organisms to reattain the equilibrium in face of perturbations. Unfortunately, chronic and/or traumatic exposure to stress frequently overwhelms coping ability of an individual. This is manifested as symptoms affecting emotions and cognition in stress-related mental disorders. Thus environmental interventions that promote resilience in face of stress have much clinical relevance. Focus of the bulk of relevant neurobiological research at present remains on negative aspects of health and psychological outcomes of stress exposure. Yet exposure to the stress itself can promote resilience to subsequent stressful episodes later in the life. This is especially true if the prior stress occurs early in life, is mild in its magnitude, and is controllable by the individual. This articulation has been referred to as β€œstress inoculation,” reminiscent of resilience to the pathology generated through vaccination by attenuated pathogen itself. Using experimental evidence from animal models, this review explores relationship between nature of the β€œinoculum” stress and subsequent psychological resilience.MOE (Min. of Education, S’pore)Published versio

    Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation

    No full text
    Maternal separation during early childhood results in greater sensitivity to stressors later in adult life. This is reflected as greater propensity to develop stress-related disorders in humans and animal models, including anxiety and depression. Environmental enrichment (EE) reverses some of the damaging effects of maternal separation in rodent models when provided during peripubescent life, temporally proximal to the separation. It is presently unknown if EE provided outside this critical window can still rescue separation-induced anxiety and neural plasticity. In this report we use a rat model to demonstrate that a single short episode of EE in adulthood reduced anxiety-like behaviour in maternally separated rats. We further show that maternal separation resulted in hypertrophy of dendrites and increase in spine density of basolateral amygdala neurons in adulthood, long after initial stress treatment. This is congruent with prior observations showing centrality of basolateral amygdala hypertrophy in anxiety induced by stress during adulthood. In line with the ability of the adult enrichment to rescue stress-induced anxiety, we show that enrichment renormalized stress-induced structural expansion of the amygdala neurons. These observations argue that behavioural plasticity induced by early adversity can be rescued by environmental interventions much later in life, likely mediated by ameliorating effects of enrichment on basolateral amygdala plasticity.Published versio

    Toxoplasma gondii infection induces dendritic retraction in basolateral amygdala accompanied by reduced corticosterone secretion

    No full text
    Pathological anxiety is thought to reflect a maladaptive state characterized by exaggerated fear. Naturally occurring perturbations that reduce fear can be crucial in the search for new treatments. The protozoan parasite Toxoplasma gondii invades rat brain and removes the fear that rats have of cat odors, a change believed to be parasitic manipulation of host behavior aimed at increasing parasite transmission. It is likely that mechanisms employed by T. gondii can be used as a heuristic tool to understand possible means of fear reduction in clinical settings. Male Long-Evans rats were infected with T. gondii and compared with sham-infected animals 8 weeks after infection. The amount of circulating plasma corticosterone and dendritic arborization of basolateral amygdala principal neurons were quantified. Previous studies have shown that corticosterone, acting within the basolateral amygdala, enhances the fear response to environmental stimuli. Here we show that T. gondii infection causes a dendritic retraction in basolateral amygdala neurons. Such dendritic retraction is accompanied by lower amounts of circulating corticosterone, both at baseline and when induced by an aversive cat odor. The concerted effects of parasitism on two pivotal physiological nodes of the fear response provide an animal model relevant to interactions between stress hormones and amygdalar plasticity.Published versio

    Enriched males show neuronal plasticity in hypothalamus.

    No full text
    <p>Enriched animals show significantly reduced dendritic length of neurons from VMHvl compared to non-enriched animals (A). Enriched animals show significantly enhanced dendritic length of neurons from VMHdm compared to non-enriched animals (B). Representative neuronal tracings from VMHvl (left) and VMHdm (right) for non-enriched (upper panel) and enriched (lower panel) animals. Scale bar is 100 Β΅m. (<i>Inset</i>). Enriched and non-enriched animals show similar dendritic length of neurons from postero-ventral part of medial amygdala MePV (C). **<i>p</i><0.01, exact Mann-Whitney test; nβ€Š=β€Š30–40 neurons per group.</p

    Dendritic Architecture of Principal Basolateral Amygdala Neurons Changes Congruently with Endocrine Response to Stress

    No full text
    Animals cope with changing environments through changes in behavior. Such plasticity is, however, marked by substantial inter-individual variability. Neuroendocrine reactivity to challenging environments can be an important predictor of resilience. Both basolateral amygdala (BLA) neurons and adrenal glucocorticoid signaling are integral parts of the stress neuroendocrine response. In this report, we test if individual variation in hormonal response to stress is associated with individual variation in the dendritic complexity of BLA neurons. We report a positive correlation between inter-individual variability in glucocorticoid response and neuronal plasticity in the BLA subsequent to a stressor. This suggests that stressful experiences in the past act as significant sculptors of BLA neuronal plasticity and congruent neuroendocrine response.MOE (Min. of Education, S’pore)Published versio
    corecore