80 research outputs found

    Hand Gestures Recognition for Human-Machine Interfaces: A Low-Power Bio-Inspired Armband

    Get PDF
    Hand gesture recognition has recently increased its popularity as Human-Machine Interface (HMI) in the biomedical field. Indeed, it can be performed involving many different non-invasive techniques, e.g., surface ElectroMyoGraphy (sEMG) or PhotoPlethysmoGraphy (PPG). In the last few years, the interest demonstrated by both academia and industry brought to a continuous spawning of commercial and custom wearable devices, which tried to address different challenges in many application fields, from tele-rehabilitation to sign language recognition. In this work, we propose a novel 7-channel sEMG armband, which can be employed as HMI for both serious gaming control and rehabilitation support. In particular, we designed the prototype focusing on the capability of our device to compute the Average Threshold Crossing (ATC) parameter, which is evaluated by counting how many times the sEMG signal crosses a threshold during a fixed time duration (i.e., 130 ms), directly on the wearable device. Exploiting the event-driven characteristic of the ATC, our armband is able to accomplish the on-board prediction of common hand gestures requiring less power w.r.t. state of the art devices. At the end of an acquisition campaign that involved the participation of 26 people, we obtained an average classifier accuracy of 91.9% when aiming to recognize in real time 8 active hand gestures plus the idle state. Furthermore, with 2.92mA of current absorption during active functioning and 1.34mA prediction latency, this prototype confirmed our expectations and can be an appealing solution for long-term (up to 60 h) medical and consumer applications

    Motion Analysis for Experimental Evaluation of an Event-Driven FES System

    Get PDF
    In this work, a system for controlling Functional Electrical Stimulation (FES) has been experimentally evaluated. The peculiarity of the system is to use an event-driven approach to modulate stimulation intensity, instead of the typical feature extraction of surface ElectroMyoGraphic (sEMG) signal. To validate our methodology, the system capability to control FES was tested on a population of 17 subjects, reproducing 6 different movements. Limbs trajectories were acquired using a gold standard motion tracking tool. The implemented segmentation algorithm has been detailed, together with the designed experimental protocol. A motion analysis was performed through a multiparametric evaluation, including the extraction of features such as the trajectory area and the movement velocity. The obtained results show a median cross-correlation coefficient of 0.910 and a median delay of 800 ms, between each couple of voluntary and stimulated exercise, making our system comparable w.r.t. state-of-the-art works. Furthermore, a 97.39% successful rate on movement replication demonstrates the feasibility of the system for rehabilitation purposes

    Octantis: An Exploration Tool for Beyond von Neumann architectures

    Get PDF
    Nowadays, the modern electronic systems are facing an important limitation in terms of performance, known as von Neumann bottleneck. It affects the communications between two crucial elements, the CPU and the memory, which suffer from a saturation in bandwidth. Many solutions are currently under investigation and among them the concept of Logic-in-Memory (LiM) has been introduced: a memory enriched in its array of computational elements which enable the implementation of a flexible distributed processing system. The current work introduces Octantis, a High-Level Synthesizer useful for the exploration of LiM architectures. The proposed software analyzes an input algorithm described in standard C language and identifies which LiM architecture would implement it better. At its output, the synthesized solution is provided together with a test-bench, to properly characterize it, in terms of performance, spatial occupation and power consumption. Many algorithms have been successfully synthesized by Octantis and some of the results achieved will be discussed along the document

    RISC-Vlim, a RISC-V Framework for Logic-in-Memory Architectures

    Get PDF
    Most modern CPU architectures are based on the von Neumann principle, where memory and processing units are separate entities. Although processing unit performance has improved over the years, memory capacity has not followed the same trend, creating a performance gap between them. This problem is known as the "memory wall" and severely limits the performance of a microprocessor. One of the most promising solutions is the "logic-in-memory" approach. It consists of merging memory and logic units, enabling data to be processed directly inside the memory itself. Here we propose an RISC-V framework that supports logic-in-memory operations. We substitute data memory with a circuit capable of storing data and of performing in-memory computation. The framework is based on a standard memory interface, so different logic-in-memory architectures can be inserted inside the microprocessor, based both on CMOS and emerging technologies. The main advantage of this framework is the possibility of comparing the performance of different logic-in-memory solutions on code execution. We demonstrate the effectiveness of the framework using a CMOS volatile memory and a memory based on a new emerging technology, racetrack logic. The results demonstrate an improvement in algorithm execution speed and a reduction in energy consumption

    Low Latency Protocols Investigation for Event-Driven Wireless Body Area Networks

    Get PDF
    Nowadays distributed electronic health and fitness monitoring are hot-topics in bio-engineering, however common solutions for Wireless Body Area Networks (WBANs) featuring high-density sampled data transmission still stumbles over the trade-off among data rate, application throughput, and latency. Therefore, the Bluetooth Low Energy (BLE) and the IEEE 802.15.4 protocols are here investigated, with the aim of developing an event-driven WBAN to support a threshold-crossing surface ElectroMyoGraphy (sEMG) acquisition approach. We then implemented a custom protocol to overcome their limitations and fulfil all the requirements, resulting in a transmission latency of 0.856 ms ± 1 µs and enabling a functional operating time up to 110 h

    Tutorial: A Versatile Bio-Inspired System for Processing and Transmission of Muscular Information

    Get PDF
    Device wearability and operating time are trending topics in recent state-of-art works on surface ElectroMyoGraphic (sEMG) muscle monitoring. No optimal trade-off, able to concurrently address several problems of the acquisition system like robustness, miniaturization, versatility, and power efficiency, has yet been found. In this tutorial we present a solution to most of these issues, embedding in a single device both an sEMG acquisition channel, with our custom event-driven hardware feature extraction technique (named Average Threshold Crossing), and a digital part, which includes a microcontroller unit, for (optionally) sEMG sampling and processing, and a Bluetooth communication, for wireless data transmission. The knowledge acquired by the research group brought to an accurate selection of each single component, resulting in a very efficient prototype, with a comfortable final size (57.8mm x 25.2mm x 22.1mm) and a consistent signal-to-noise ratio of the acquired sEMG (higher than 15 dB). Furthermore, a precise design of the firmware has been performed, handling both signal acquisition and Bluetooth transmission concurrently, thanks to a FreeRTOS custom implementation. In particular, the system adapts to both sEMG and ATC transmission, with an application throughput up to 2 kB s-1 and an average operating time of 80 h (for high resolution sEMG sampling), relaxable to 8Bs-1 throughput and about 230 h operating time (considering a 110mAh battery), in case of ATC acquisition only. Here we share our experience over the years in designing wearable systems for the sEMG detection, specifying in detail how our event-driven approach could benefit the device development phases. Some previous basic knowledge about biosignal acquisition, electronic circuits and programming would certainly ease the repeatability of this tutorial
    • …
    corecore