20 research outputs found
Contamination of plants, soil, and building stones at a Roman heritage archaeological site in an urban area
Some cultural heritage sites in Jordan are in urban areas being exposed to anthropogenic pollution. Therefore, it is important to evaluate the contamination at these sites to protect them. Here, we considered a Roman archeological site (Nymphaeum) situated in Amman. The contamination in soil, plants, and building stones did not show spatial distribution within the site. The contamination was the highest in soil (heavy metals 10(4) -10(7) ppb and sulfur similar to 3.5x10(6) ppb) whereas in plants was the least for Cr (similar to 400 ppb) and in building stones it was the least for Cu (similar to 860 ppb). The highest contamination in plants and building stones was found for Al (similar to 5x10(4) and similar to 6.2x10(5) ppb respectively). The sulfur content in plants (similar to 7.6x10(5) ppb) was higher than that in the building stones (similar to 2.3x10(5) ppb). The heavy metals and sulfur contamination in the building stones were lower than what was reported elsewhere outside Jordan.Peer reviewe
Antifouling polymeric nanocomposite membrane based on interfacial polymerization of polyamide enhanced with green TiO2 nanoparticles for water desalination
In the present investigation, the preparation and characterization of polyamide/TiO2 as thin film nanocomposites (TFN) for brackish water desalination was investigated. TiO2 nanoparticles (NPs) were synthesized by a green method using thyme plant extract as a reducing and capping agent. The TiO2 NPs was successfully prepared in pure crystalline anatase phase with 15 nm size, and ā33.1 mV zeta potential. The antimicrobial tests confirmed the antimicrobial activity of TiO2 against gram-positive and gram-negative bacteria. In addition, TiO2 NPs showed a good photocatalytic activity in degradation of methylene blue dye. TFN based on interfacial polymerization was enhanced by embedding 5% of the greenly synthesized TiO2 NPs within the polyamide thin film active layer. The incorporation of TiO2 NPs was confirmed by SEM, atomic force microscope (AFM), surface wettability, and FTIR. Membranes performance was investigated based on flux, salt rejection and fouling resistance. The antifouling was examined using bovine serum albumin (BSA) as protein fouling by dead-end cell filtration system at 2 bar. The results showed the TFN increased in water flux by 40.9% and a slight decrease in NaCl rejection (6.3%) was observed, with enhancement in antifouling properties. The flux recovery rate of the modified TFN membranes after fouling with BSA solution was enhanced by 21.5% (from 61.7% for TFC to 83.2% for TFN). Also, they demonstrated remarkable anti-biofouling behavior against both bacterial strains
Recommended from our members
E/Z reversible photoisomerization of methyl orange doped polyacrylic acid-based polyelectrolyte brush films
The photoswitching behavior of the polyacrylic acid (PAA) doped by methyl orange (MO) brush film was investigated using spectral analysis of UV-Vis absorbance, Fourier Transformation Infrared spectroscopy, 2D electrical conductivity mapping and Atomic Force Microscopy. The kinetics and time evolution of the photoisomerization of the PAA-MO PEBs film from E-state to Z-state by UV-light irradiation, and reverse thermal relaxation to E-state was explored. The results confirm that the photoisomerization kinetics of the overall peak is the superposition of the photoisomerization kinetics of (Formula presented.) transition, low- and high-frequency of the (Formula presented.) transition bands. The EāZ transformation led to transforming the azobenzene from flat with no dipole moment to 3.0Ā D dipole moment. Hence, the electrical conductivity escalated accordingly. The transformation of E-state to Z-state led to the collapse of the formed brushes because of the angular rotational momentum consequent to EāZ isomerization
Fabrication of a Novel (PVDF/MWCNT/Polypyrrole) Antifouling High Flux Ultrafiltration Membrane for Crude Oil Wastewater Treatment
The present work deals with the fabrication of novel poly(vinylidene fluoride) (PVDF)/Multi-wall Carbon Nanotubes (MWCNT)/Polypyrrole (PPy) ultrafiltration membrane by phase inversion technique for the removal of crude oil from refinery wastewater. In situ polymerization of pyrrole with different concentrations of MWCNT ranging from 0.025 wt.% to 0.3 wt.% in PVDF prepared solutions. Measurement of permeability, porosity, contact angle, tensile strength, zeta potential, rejection studies and morphological characterization by scanning electron microscopy (SEM) were conducted. The results showed that membrane with (0.05% MWCNT) concentration had the highest permeability flux (850 LMH/bar), about 17 folds improvement of permeability compared to pristine PVDF membrane. Moreover, membrane rejection of crude oil reached about 99.9%. The excellent performance of this nanocomposite membrane suggests that novel PVDF modification with polypyrrole had a considerable effect on permeability with high potential for use in the treatment of oily wastewater in the refinery industry
Cellulose Acetate Membranes: Fouling Types and Antifouling StrategiesāA Brief Review
Cellulose acetate (CA) is a semisynthetic, biodegradable polymer. Due to its characteristics, CA has several applications, including water membranes, filament-forming matrices, biomedical nanocomposites, household tools, and photographic films. This review deals with topics related to the CA membranes, which are prepared using different techniques, such as the phase inversion technique. CA membranes are considered very important since they can be used as microfiltration membranes (MF), ultrafiltration membranes (UF), nanofiltration membranes (NF), reverse osmosis (RO) membranes, and forward osmosis (FO) membranes. Membrane fouling results from the accumulation of materials that the membrane rejects on the surface or in the membraneās pores, lowering the membraneās flux and rejection rates. There are various forms of CA membrane fouling, for instance, organic, inorganic, particulate fouling, and biofouling. In this review, strategies used for CA membrane antifouling are discussed and summarized into four main techniques: feed solution pretreatment, cleaning of the membrane surface, membrane surface modification, which can be applied using either nanoparticles, polymer reactions, surface grafting, or surface topography, and surface coating
Silver Nanoparticles (Ag NPs) Boost Mitigation Powers of Chenopodium Quinoa (Q6 Line) Grown under In Vitro Salt-Stressing Conditions
Quinoa (Chenopodium quinoa) is of great economic importance and constitutes one of the model plants for salinity and drought tolerance in the Mediterranean climate. This study aimed to study the physiological responses of Q6 (a quinoa line developed by International Center for Bio-saline Agriculture (ICBA) in cooperation with the National Center for Agricultural Research (NARC), Jordan) grown under in vitro salt-stressing conditions (MS Media plus either 0, 25, 50, 75, 100, 150, or 200 mM of NaCl) and to determine the highest salt level that Q6 plantlets can tolerate. After this, different levels of chemically synthesized silver nanoparticles (Ag NPs) (25, 50, and 75 mg/L) were added to the growth MS media to examine if they can boost the mitigation powers of Q6 plantlets against the highest salt level that the Q6 plantlets could tolerate. Data showed that all tested growth parameters were negatively affected by adding NaCl to the media at all levels. Shoot length, proliferation, and fresh and dry weights declined to reach minimum values at 200 mM NaCl when compared to the other NaCl levels. Similarly, chlorophyll, protein, and ion content were negatively affected when exposed to NaCl at all levels, while proline increased significantly with increasing NaCl in the growth media. The addition of Ag NPs resulted in improving the mitigation powers of Q6 plantlets, especially when 75 mg/L Ag NPs were added, as this resulted in a significant improvement in microshoot growth under 200 mM NaCl when compared to the control. Adding 75 mg/L of Ag NPs to 200 mM NaCl improved shoot growth (3.56 cm) when compared to (1.04 cm) obtained plantlets that were grown in 200 mM NaCl alone. Further, other growth parameters were almost doubled by adding 75 mg/L of Ag NPs to 200 mM NaCl when compared to 200 mM NaCl alone. Additionally, adding Ag NPs (especially at the 75 mg/L level) to the media improved total chlorophyll, protein, and ion content while also reducing proline when compared to the control, which indicated an improvement in microshoot tolerance to salt-stressing conditions. These results indicate that adding specific concentrations of Ag NPs improves the growth performance and stress tolerance of Q6 grown under salt-stressing conditions
Silver Nanoparticles (Ag NPs) Boost Mitigation Powers of <i>Chenopodium Quinoa</i> (Q6 Line) Grown under In Vitro Salt-Stressing Conditions
Quinoa (Chenopodium quinoa) is of great economic importance and constitutes one of the model plants for salinity and drought tolerance in the Mediterranean climate. This study aimed to study the physiological responses of Q6 (a quinoa line developed by International Center for Bio-saline Agriculture (ICBA) in cooperation with the National Center for Agricultural Research (NARC), Jordan) grown under in vitro salt-stressing conditions (MS Media plus either 0, 25, 50, 75, 100, 150, or 200 mM of NaCl) and to determine the highest salt level that Q6 plantlets can tolerate. After this, different levels of chemically synthesized silver nanoparticles (Ag NPs) (25, 50, and 75 mg/L) were added to the growth MS media to examine if they can boost the mitigation powers of Q6 plantlets against the highest salt level that the Q6 plantlets could tolerate. Data showed that all tested growth parameters were negatively affected by adding NaCl to the media at all levels. Shoot length, proliferation, and fresh and dry weights declined to reach minimum values at 200 mM NaCl when compared to the other NaCl levels. Similarly, chlorophyll, protein, and ion content were negatively affected when exposed to NaCl at all levels, while proline increased significantly with increasing NaCl in the growth media. The addition of Ag NPs resulted in improving the mitigation powers of Q6 plantlets, especially when 75 mg/L Ag NPs were added, as this resulted in a significant improvement in microshoot growth under 200 mM NaCl when compared to the control. Adding 75 mg/L of Ag NPs to 200 mM NaCl improved shoot growth (3.56 cm) when compared to (1.04 cm) obtained plantlets that were grown in 200 mM NaCl alone. Further, other growth parameters were almost doubled by adding 75 mg/L of Ag NPs to 200 mM NaCl when compared to 200 mM NaCl alone. Additionally, adding Ag NPs (especially at the 75 mg/L level) to the media improved total chlorophyll, protein, and ion content while also reducing proline when compared to the control, which indicated an improvement in microshoot tolerance to salt-stressing conditions. These results indicate that adding specific concentrations of Ag NPs improves the growth performance and stress tolerance of Q6 grown under salt-stressing conditions
Cellulose Acetate Membranes: Fouling Types and Antifouling Strategies—A Brief Review
Cellulose acetate (CA) is a semisynthetic, biodegradable polymer. Due to its characteristics, CA has several applications, including water membranes, filament-forming matrices, biomedical nanocomposites, household tools, and photographic films. This review deals with topics related to the CA membranes, which are prepared using different techniques, such as the phase inversion technique. CA membranes are considered very important since they can be used as microfiltration membranes (MF), ultrafiltration membranes (UF), nanofiltration membranes (NF), reverse osmosis (RO) membranes, and forward osmosis (FO) membranes. Membrane fouling results from the accumulation of materials that the membrane rejects on the surface or in the membrane’s pores, lowering the membrane’s flux and rejection rates. There are various forms of CA membrane fouling, for instance, organic, inorganic, particulate fouling, and biofouling. In this review, strategies used for CA membrane antifouling are discussed and summarized into four main techniques: feed solution pretreatment, cleaning of the membrane surface, membrane surface modification, which can be applied using either nanoparticles, polymer reactions, surface grafting, or surface topography, and surface coating
The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET-clay nanocomposites.
International audienceThe inclusion of a synthetic fluoromica clay in PET affects its processability via biaxial stretching and stretching temperature (95 Ā°C and 102 Ā°C) and strain rate (1 s and 2 s) influence the structuring and properties of the stretched material. The inclusion of clay has little effect on the temperature operating window for the PET-clay but it has a major effect on deformation behavior which will necessitate the use of much higher forming forces during processing. The strain hardening behavior of both the filled and unfilled materials is well correlated with tensile strength and tensile modulus. Increasing the stretching temperature to reduce stretching forces has a detrimental effect on clay exfoliation, mechanical and O barrier properties. Increasing strain rate has a lesser effect on the strain hardening behavior of the PET-clay compared with the pure PET and this is attributed to possible adiabatic heating in the PET-clay sample at the higher strain rate. The Halpin-Tsai model is shown to accurately predict the modulus enhancement of the PET-clay materials when a modified particle modulus rather than nominal clay modulus is used