5 research outputs found

    Environment and shipping drive environmental DNA beta-diversity among commercial ports

    Get PDF
    The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.Fil: Andrés, Jose. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Czechowski, Paul. Cornell University. Department Of Ecology And Evolutionary Biology; . University of Otago; Nueva Zelanda. Helmholtz Institute for Metabolic, Obesity and Vascular Research; AlemaniaFil: Grey, Erin. University of Maine; Estados Unidos. Governors State University; Estados UnidosFil: Saebi, Mandana. University of Notre Dame; Estados UnidosFil: Andres, Kara. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Brown, Christopher. California State University Maritime Academy; Estados UnidosFil: Chawla, Nitesh. University of Notre Dame; Estados UnidosFil: Corbett, James J.. University of Delaware; Estados UnidosFil: Brys, Rein. Research Institute for Nature and Forest; BélgicaFil: Cassey, Phillip. University of Adelaide; AustraliaFil: Correa, Nancy. Ministerio de Defensa. Armada Argentina. Instituto Universitario Naval de la Ara. Escuela de Ciencias del Mar; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Deveney, Marty R.. South Australian Research And Development Institute; AustraliaFil: Egan, Scott P.. Rice University; Estados UnidosFil: Fisher, Joshua P.. United States Fish and Wildlife Service; Estados UnidosFil: vanden Hooff, Rian. Oregon Department of Environmental Quality; Estados UnidosFil: Knapp, Charles R.. Daniel P. Haerther Center for Conservation and Research; Estados UnidosFil: Leong, Sandric Chee Yew. National University of Singapore; SingapurFil: Neilson, Brian J.. State of Hawaii Division of Aquatic Resources; Estados UnidosFil: Paolucci, Esteban Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Pfrender, Michael E.. University of Notre Dame; Estados UnidosFil: Pochardt, Meredith R.. M. Rose Consulting; Estados UnidosFil: Prowse, Thomas A. A.. University of Adelaide; AustraliaFil: Rumrill, Steven S.. Oregon Department of Fish and Wildlife; Estados UnidosFil: Scianni, Chris. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Marine Invasive Species Program; Estados UnidosFil: Sylvester, Francisco. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Tamburri, Mario N.. University of Maryland; Estados UnidosFil: Therriault, Thomas W.. Pacific Biological Station; CanadáFil: Yeo, Darren C. J.. National University of Singapore; SingapurFil: Lodge, David M.. Cornell University. Department Of Ecology And Evolutionary Biology

    Field-Assisted Ion Exchange of Borosilicate Glass

    No full text
    Due to the relatively low failure strength of untreated glass, surface flaws generated during processing or through handling can limit the useful lifetimes of glass-based components, such as display panels for cellular phones, windows, and transparent armor. Field-assisted ion exchange (FAIE) is a glass strengthening technique being studied to overcome the inherently poor tensile properties of glass and to better control fracture properties. During FAIE, smaller ions in the glass (Na+) exchange positions with larger ions (K+) from a molten bath of potassium nitrate. The ion exchange process creates compressive stresses at the glass surface, thereby increasing the strength of the glass. The relationship between FAIE parameters – time (10-90 min), temperature (370-420 °C), and applied voltage (40-500 VDC) – on the strength of borosilicate glass tubes is under investigation. Four-point bend tests and nanoindentation will be performed to quantify the fracture strength, hardness, and elastic modulus of the ion exchanged glass. The results are expected to show that the fracture strength of common glass materials can be significantly enhanced and controlled through FAIE

    Modeling the Effect of Point Defects on the Structure of Perovskites

    No full text
    Many perovskite-structured ceramic materials are known to have useful microwave dielectric properties, with promising applications in mobile telecommunications, an industry which will be worth an estimated $341 billion by 2015. Current mathematical models used to predict the functional properties of specific perovskites are poorly suited to complex or defective structures. In the present study, a solid-state processing method was used to synthesize perovskite ceramics in the system [(Ca,Sr)1-3n/2Lnn]TiO3 (Ln = La or Nd). Single-phase powder samples were produced at 1300ÂşC and characterized using X-ray diffraction. The resulting products were then uniaxially pressed to form pellets which were sintered at temperatures up to 1600ÂşC. This work investigates the effect of point defects on the structure of the resultant perovskites. The ultimate goal is to develop a predictive model, based solely on composition and easily-obtainable published reference data, for the effect of point defects on the structure and, by extension, dielectric properties of perovskites

    Modeling the Effective Size of Charge-Balancing Vacancies in the Structure of Rare Earth Doped Perovskites.

    No full text
    Point defects like vacancies can have a profound effect on the structure of perovskite ceramics, but the exact mechanisms involved are still unclear. While a few theoretical models exist for some perovskites, none are particularly accurate or at all suited to the impure, doped, or otherwise defective ceramics which abound in commercial devices. A new empirical approach is presented here. A predictive model for the pseudocubic lattice constant of such perovskites based solely on published ionic radii data has been developed and adapted as a model for effective tolerance factor. This model shows that vacancies are not zero-dimensional defects but have an effective size due to both bond relaxation and mutual repulsion of coordinating oxygen ions. For some compositions this size can be effectively negative, corresponding to the relaxation of oxygen ions towards the vacant site. For other compositions the size is positive, resulting from the electrostatic repulsion of the coordinating oxygen ions. These models more consistently predict both pseudocubic lattice constant, hence cell volume, and the tolerance factor for [(Ca,Sr,Pb)1-3xLn2x]TiO3 (Ln = Y, La, Ce, Nd) perovskites than existing methods

    Ocean Acidification Has Multiple Modes of Action on Bivalve Larvae

    No full text
    Ocean acidification (OA) is altering the chemistry of the world's oceans at rates unparalleled in the past roughly 1 million years. Understanding the impacts of this rapid change in baseline carbonate chemistry on marine organisms needs a precise, mechanistic understanding of physiological responses to carbonate chemistry. Recent experimental work has shown shell development and growth in some bivalve larvae, have direct sensitivities to calcium carbonate saturation state that is not modulated through organismal acid-base chemistry. To understand different modes of action of OA on bivalve larvae, we experimentally tested how pH, PCO2, and saturation state independently affect shell growth and development, respiration rate, and initiation of feeding in Mytilus californianus embryos and larvae. We found, as documented in other bivalve larvae, that shell development and growth were affected by aragonite saturation state, and not by pH or PCO2. Respiration rate was elevated under very low pH (~7.4) with no change between pH of ~ 8.3 to ~7.8. Initiation of feeding appeared to be most sensitive to PCO2, and possibly minor response to pH under elevated PCO2. Although different components of physiology responded to different carbonate system variables, the inability to normally develop a shell due to lower saturation state precludes pH or PCO2 effects later in the life history. However, saturation state effects during early shell development will carry-over to later stages, where pH or PCO2 effects can compound OA effects on bivalve larvae. Our findings suggest OA may be a multi-stressor unto itself. Shell development and growth of the native mussel, M. californianus, was indistinguishable from the Mediterranean mussel, Mytilus galloprovincialis, collected from the southern U.S. Pacific coast, an area not subjected to seasonal upwelling. The concordance in responses suggests a fundamental OA bottleneck during development of the first shell material affected only by saturation state
    corecore